Convergence of equilibria for numerical approximations of a suspension model

被引:1
作者
Valero, J. [1 ]
Gimenez, A. [1 ]
Kapustyan, O. V. [2 ]
Kasyanov, P. O. [3 ]
Amigo, J. M. [1 ]
机构
[1] Univ Miguel Hernandez Elche, Ctr Invest Operat, Elche 03202, Alicante, Spain
[2] Taras Shevchenko Natl Univ Kyiv, Kiev, Ukraine
[3] Natl Tech Univ Ukraine, Kyiv Polytech Inst, Inst Appl Syst Anal, Kiev, Ukraine
关键词
Non-Newtonian fluids; Suspensions; Numerical approximations; Finite-difference schemes; Partial differential equations; MULTISCALE MODEL;
D O I
10.1016/j.camwa.2016.05.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the numerical approximations of a non-Newtonian model for concentrated suspensions. First, we prove that the approximative models possess a unique fixed point and study their convergence to a stationary point of the original equation. Second, we implement an implicit Euler scheme, proving the convergence of these approximations as well. Finally, numerical simulations are provided. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:856 / 878
页数:23
相关论文
共 8 条
[1]   ATTRACTORS FOR A LATTICE DYNAMICAL SYSTEM GENERATED BY NON-NEWTONIAN FLUIDS MODELING SUSPENSIONS [J].
Amigo, Jose M. ;
Gimenez, Angel ;
Morillas, Francisco ;
Valero, Jose .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (09) :2681-2700
[2]   ATTRACTORS FOR A NON-LINEAR PARABOLIC EQUATION MODELLING SUSPENSION FLOWS [J].
Amigo, Jose M. ;
Catto, Isabelle ;
Gimenez, Angel ;
Valero, Jose .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2009, 11 (02) :205-231
[3]   Well-posedness of a multiscale model for concentrated suspensions [J].
Cancès, E ;
Catto, I ;
Gati, Y ;
Le Bris, C .
MULTISCALE MODELING & SIMULATION, 2005, 4 (04) :1041-1058
[4]   Mathematical analysis of a nonlinear parabolic equation arising in the modelling of non-Newtonian flows [J].
Cancès, E ;
Catto, I ;
Gati, Y .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 37 (01) :60-82
[5]  
Cancès E, 2006, DISCRETE CONT DYN-B, V6, P449
[6]   Stability and Numerical Analysis of the Hebraud-Lequeux Model for Suspensions [J].
Gimenez, Angel ;
Morillas, Francisco ;
Valero, Jose ;
Amigo, Jose Maria .
DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2011, 2011
[7]   Mode-coupling theory for the pasty rheology of soft glassy materials [J].
Hebraud, P ;
Lequeux, F .
PHYSICAL REVIEW LETTERS, 1998, 81 (14) :2934-2937
[8]   Convergence of Numerical Approximations for a Non-Newtonian Model of Suspensions [J].
Kapustyan, O. V. ;
Valero, J. ;
Kasyanov, P. O. ;
Gimenez, A. ;
Amigo, J. M. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (14)