DMF-exfoliated graphene for electrochemical NADH detection

被引:80
作者
Keeley, Gareth P. [1 ,2 ,3 ]
O'Neill, Arlene [2 ,4 ]
Holzinger, Michael [1 ]
Cosnier, Serge [1 ]
Coleman, Jonathan N. [2 ,4 ]
Duesberg, Georg S. [2 ,3 ]
机构
[1] Univ Grenoble 1, ICMG FR 2607, UMR 5250, Dept Chim Mol,CNRS, F-38041 Grenoble 9, France
[2] Ctr Res Adapt Nanostruct & Nanodevices CRANN, Dublin 2, Ireland
[3] Trinity Coll Dublin, Sch Chem, Dublin 2, Ireland
[4] Trinity Coll Dublin, Sch Phys, Dublin 2, Ireland
关键词
CARBON NANOTUBES; PYROLYTIC-GRAPHITE; DIAMOND ELECTRODES; GLASSY-CARBON; BIOSENSORS; FILMS;
D O I
10.1039/c1cp20060g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electrochemical detection of NADH is of considerable interest because it is required as a cofactor in a large number of dehydrogenase-based biosensors. However, the presence of oxygenated functionalities on the electrode often causes fouling due to the adsorption of the oxidised form, NAD(+). Here we report an electroanalytical NADH sensor based on DMF-exfoliated graphene. The latter is shown to have a very low oxygen content, facilitating the exceptionally stable and sensitive detection of this important analyte.
引用
收藏
页码:7747 / 7750
页数:4
相关论文
共 24 条
[11]   Graphene modified basal and edge plane pyrolytic graphite electrodes for electrocatalytic oxidation of hydrogen peroxide and β-nicotinamide adenine dinucleotide [J].
Lin, Wei-Jhih ;
Liao, Chien-Shiun ;
Jhang, Jia-Hao ;
Tsai, Yu-Chen .
ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (11) :2153-2156
[12]   Advanced carbon electrode materials for molecular electrochemistry [J].
McCreery, Richard L. .
CHEMICAL REVIEWS, 2008, 108 (07) :2646-2687
[13]   A Mechanism of Adsorption of β-Nicotinamide Adenine Dinucleotide on Graphene Sheets: Experiment and Theory [J].
Pumera, Martin ;
Scipioni, Roberto ;
Iwai, Hideo ;
Ohno, Takahisa ;
Miyahara, Yuji ;
Boero, Mauro .
CHEMISTRY-A EUROPEAN JOURNAL, 2009, 15 (41) :10851-10856
[14]   Electrochemistry of Graphene: New Horizons for Sensing and Energy Storage [J].
Pumera, Martin .
CHEMICAL RECORD, 2009, 9 (04) :211-223
[15]   Electrochemical oxidation of NADH at highly boron-doped diamond electrodes [J].
Rao, TN ;
Yagi, I ;
Miwa, T ;
Tryk, DA ;
Fujishima, A .
ANALYTICAL CHEMISTRY, 1999, 71 (13) :2506-2511
[16]   Electrochemical determination of NADH and ethanol based on ionic liquid-functionalized graphene [J].
Shan, Changsheng ;
Yang, Huafeng ;
Han, Dongxue ;
Zhang, Qixian ;
Ivaska, Ari ;
Niu, Li .
BIOSENSORS & BIOELECTRONICS, 2010, 25 (06) :1504-1508
[17]   Catalyst-Free Efficient Growth, Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films with Sharp Edge Planes [J].
Shang, Nai Gui ;
Papakonstantinou, Pagona ;
McMullan, Martin ;
Chu, Ming ;
Stamboulis, Artemis ;
Potenza, Alessandro ;
Dhesi, Sarnjeet S. ;
Marchetto, Helder .
ADVANCED FUNCTIONAL MATERIALS, 2008, 18 (21) :3506-3514
[18]   Graphene Based Electrochemical Sensors and Biosensors: A Review [J].
Shao, Yuyan ;
Wang, Jun ;
Wu, Hong ;
Liu, Jun ;
Aksay, Ilhan A. ;
Lin, Yuehe .
ELECTROANALYSIS, 2010, 22 (10) :1027-1036
[19]   Comparative studies on electrochemical activity of graphene nanosheets and carbon nanotubes [J].
Wang, Jingfang ;
Yang, Shunlong ;
Guo, Deyin ;
Yu, Ping ;
Li, Dan ;
Ye, Jianshan ;
Mao, Lanqun .
ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (10) :1892-1895
[20]   Detection of NADH and ethanol based on catalytic activity of soluble carbon nanofiber with low overpotential [J].
Wu, Lina ;
Zhang, Xueji ;
Ju, Huangxian .
ANALYTICAL CHEMISTRY, 2007, 79 (02) :453-458