Orbital stability of the sum of N peakons for the generalized higher-order Camassa-Holm equation

被引:2
作者
Deng, Tongjie [1 ]
Chen, Aiyong [2 ]
机构
[1] Hunan Normal Univ, Sch Math & Stat, Key Lab Comp & Stochast Math, Minist Educ, Changsha 410081, Hunan, Peoples R China
[2] Hunan First Normal Univ, Dept Math, Changsha 410205, Hunan, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2022年 / 73卷 / 04期
基金
中国国家自然科学基金;
关键词
Generalized higher-order Camassa-Holm equation; Peakons; Multi-peakons; Orbital stability; SHALLOW-WATER EQUATION; BREAKING; WAVES;
D O I
10.1007/s00033-022-01796-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The orbital stability of peakons for the generalized higher-order Camassa-Holm equation has been established by Qin et al. (Z Angew Math Phys 73:96, 2022. https://doi.org/10.1007/s00033-022-01739-3) . In this paper, using energy argument and combining the method of the orbital stability of a single peakon with monotonicity of the local energy norm, we prove that the sum of N sufficiently decoupled peakons is orbitally stable in the energy space.
引用
收藏
页数:28
相关论文
共 19 条
[1]   A general family of multi-peakon equations and their properties [J].
Anco, Stephen C. ;
Recio, Elena .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (12)
[2]  
[Anonymous], 1998, Ann. Scuola Norm. Sup. Pisa Cl. Sci
[3]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[4]   Stability of peakons and periodic peakons for a nonlinear quartic Camassa-Holm equation [J].
Chen, Aiyong ;
Deng, Tongjie ;
Qiao, Zhijun .
MONATSHEFTE FUR MATHEMATIK, 2022, 198 (02) :251-288
[5]   Stability of the Camassa-Holm peakons in the dynamics of a shallow-water-type system [J].
Chen, Robin Ming ;
Liu, Xiaochuan ;
Liu, Yue ;
Qu, Changzheng .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (02)
[6]  
Constantin A, 2000, COMMUN PUR APPL MATH, V53, P603
[7]   Wave breaking for nonlinear nonlocal shallow water equations [J].
Constantin, A ;
Escher, J .
ACTA MATHEMATICA, 1998, 181 (02) :229-243
[8]   Orbital stability of solitary waves for a shallow water equation [J].
Constantin, A ;
Molinet, L .
PHYSICA D, 2001, 157 (1-2) :75-89
[9]   Existence of permanent and breaking waves for a shallow water equation: A geometric approach [J].
Constantin, A .
ANNALES DE L INSTITUT FOURIER, 2000, 50 (02) :321-+
[10]   Stability of multipeakons [J].
El Dika, Khaled ;
Molinet, Luc .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (04) :1517-1532