Ojective ideals in modular lattices

被引:3
作者
Nimbhorkar, Shriram K. [1 ]
Shroff, Rupal C. [1 ]
机构
[1] Dr Babasaheb Ambedkar Marathwada Univ, Dept Math, Aurangabad 431004, Maharashtra, India
关键词
modular lattice; essential ideal; max-semicomplement; extending ideal; direct summand; exchangeable decomposition; ojective ideal; EXTENDING MODULES; DIRECT SUMS;
D O I
10.1007/s10587-015-0166-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The concept of an extending ideal in a modular lattice is introduced. A translation of module-theoretical concept of ojectivity (i.e. generalized relative injectivity) in the context of the lattice of ideals of a modular lattice is introduced. In a modular lattice satisfying a certain condition, a characterization is given for direct summands of an extending ideal to be mutually ojective. We define exchangeable decomposition and internal exchange property of an ideal in a modular lattice. It is shown that a finite decomposition of an extending ideal is exchangeable if and only if its summands are mutually ojective.
引用
收藏
页码:161 / 178
页数:18
相关论文
共 12 条
  • [1] GOLDIE EXTENDING MODULES (vol 37, pg 663, 2009)
    Akalan, Evrim
    Birkenmeier, Gary F.
    Tercan, Adnan
    [J]. COMMUNICATIONS IN ALGEBRA, 2013, 41 (05) : 2005 - 2005
  • [2] Modules in which every fully invariant submodule is essential in a direct summand
    Birkenmeier, GF
    Müller, BJ
    Rizvi, ST
    [J]. COMMUNICATIONS IN ALGEBRA, 2002, 30 (03) : 1395 - 1415
  • [3] Graizer G., 1998, GEN LATTICE THEORY
  • [4] ON GOLDIE AND DUAL GOLDIE DIMENSIONS
    GRZESZCZUK, P
    PUCZYLOWSKI, ER
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 1984, 31 (1-3) : 47 - 54
  • [5] On finiteness conditions of modular lattices
    Grzeszczuk, P
    Puczylowski, ER
    [J]. COMMUNICATIONS IN ALGEBRA, 1998, 26 (09) : 2949 - 2957
  • [6] On direct sums of extending modules and internal exchange property
    Hanada, K
    Kuratomi, Y
    Oshiro, K
    [J]. JOURNAL OF ALGEBRA, 2002, 250 (01) : 115 - 133
  • [7] HARMANCI A, 1993, HOUSTON J MATH, V19, P523
  • [8] KAMAL MA, 1988, OSAKA J MATH, V25, P531
  • [9] KAMAL MA, 1988, OSAKA J MATH, V25, P825
  • [10] KAMAL MA, 1988, OSAKA J MATH, V25, P539