Ojective ideals in modular lattices

被引:3
作者
Nimbhorkar, Shriram K. [1 ]
Shroff, Rupal C. [1 ]
机构
[1] Dr Babasaheb Ambedkar Marathwada Univ, Dept Math, Aurangabad 431004, Maharashtra, India
关键词
modular lattice; essential ideal; max-semicomplement; extending ideal; direct summand; exchangeable decomposition; ojective ideal; EXTENDING MODULES; DIRECT SUMS;
D O I
10.1007/s10587-015-0166-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The concept of an extending ideal in a modular lattice is introduced. A translation of module-theoretical concept of ojectivity (i.e. generalized relative injectivity) in the context of the lattice of ideals of a modular lattice is introduced. In a modular lattice satisfying a certain condition, a characterization is given for direct summands of an extending ideal to be mutually ojective. We define exchangeable decomposition and internal exchange property of an ideal in a modular lattice. It is shown that a finite decomposition of an extending ideal is exchangeable if and only if its summands are mutually ojective.
引用
收藏
页码:161 / 178
页数:18
相关论文
共 12 条
[1]   GOLDIE EXTENDING MODULES (vol 37, pg 663, 2009) [J].
Akalan, Evrim ;
Birkenmeier, Gary F. ;
Tercan, Adnan .
COMMUNICATIONS IN ALGEBRA, 2013, 41 (05) :2005-2005
[2]   Modules in which every fully invariant submodule is essential in a direct summand [J].
Birkenmeier, GF ;
Müller, BJ ;
Rizvi, ST .
COMMUNICATIONS IN ALGEBRA, 2002, 30 (03) :1395-1415
[3]  
Graizer G., 1998, GEN LATTICE THEORY
[4]   ON GOLDIE AND DUAL GOLDIE DIMENSIONS [J].
GRZESZCZUK, P ;
PUCZYLOWSKI, ER .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1984, 31 (1-3) :47-54
[5]   On finiteness conditions of modular lattices [J].
Grzeszczuk, P ;
Puczylowski, ER .
COMMUNICATIONS IN ALGEBRA, 1998, 26 (09) :2949-2957
[6]   On direct sums of extending modules and internal exchange property [J].
Hanada, K ;
Kuratomi, Y ;
Oshiro, K .
JOURNAL OF ALGEBRA, 2002, 250 (01) :115-133
[7]  
HARMANCI A, 1993, HOUSTON J MATH, V19, P523
[8]  
KAMAL MA, 1988, OSAKA J MATH, V25, P531
[9]  
KAMAL MA, 1988, OSAKA J MATH, V25, P825
[10]  
KAMAL MA, 1988, OSAKA J MATH, V25, P539