Free-surface, wave-free gravity flow of an inviscid, incompressible fluid over a topography: an inverse problem

被引:1
作者
Abdelrahman, N. S. [1 ]
Abou-Dina, M. S. [2 ]
Ghaleb, A. F. [2 ]
机构
[1] Suez Canal Univ, Fac Sci, Dept Math, Ismailia, Egypt
[2] Cairo Univ, Fac Sci, Dept Math, Giza 12613, Egypt
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2021年 / 72卷 / 06期
关键词
Inviscid fluid; Incompressible flow; Wave-free flow; Free-surface flow; Nonlinear problem; Fourier expansion; Inverse problem; Numerical solution; APPROXIMATE SOLUTION; BATHYMETRY; BOTTOM; CHANNEL;
D O I
10.1007/s00033-021-01629-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A simple semi-analytical approach relying on Fourier-type finite expansions and boundary collocation is proposed to solve an inverse problem for the fully nonlinear two-dimensional, steady, free-surface, wave-free gravity fluid flow in an infinite channel with topography of finite extent. The fluid is of constant density, and the flow is assumed irrotational. The coefficients involved in the series representation for the streamfunction are determined from a linear system of algebraic equations. Results are plotted for four cases belonging to two main classes of the flow.
引用
收藏
页数:12
相关论文
共 32 条
[1]   APPROXIMATE SOLUTION OF GRAVITY FLOW FROM A UNIFORM CHANNEL OVER TRIANGULAR BOTTOM FOR LARGE FROUDE-NUMBER [J].
ABDELMALEK, MB ;
HANNA, SN ;
KAMEL, MT .
APPLIED MATHEMATICAL MODELLING, 1991, 15 (01) :25-32
[2]   APPROXIMATE SOLUTION OF A FLOW OVER A RAMP FOR LARGE FROUDE-NUMBER [J].
ABDELMALEK, MB ;
HANNA, SN .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1989, 28 :105-117
[3]   GENERALIZED VORTEX METHODS FOR FREE-SURFACE FLOW PROBLEMS [J].
BAKER, GR ;
MEIRON, DI ;
ORSZAG, SA .
JOURNAL OF FLUID MECHANICS, 1982, 123 (OCT) :477-501
[4]   INTERFACIAL WAVES AND HYDRAULIC FALLS - SOME APPLICATIONS TO ATMOSPHERIC FLOWS IN THE LEE OF MOUNTAINS [J].
BELWARD, SR ;
FORBES, LK .
JOURNAL OF ENGINEERING MATHEMATICS, 1995, 29 (02) :161-179
[5]  
Belward SR, 2003, ANZIAM J, V44, pC96, DOI [10.21914/anziamj.v44i0.674, DOI 10.21914/ANZIAMJ.V44I0.674]
[6]   On satisfying the radiation condition in free-surface flows [J].
Binder, B. J. ;
Vanden-Broeck, J. -M. ;
Dias, F. .
JOURNAL OF FLUID MECHANICS, 2009, 624 :179-189
[7]   Non-uniqueness of steady free-surface flow at critical Froude number [J].
Binder, Benjamin J. ;
Blyth, Mark G. ;
Balasuriya, Sanjeeva .
EPL, 2014, 105 (04)
[8]   Free-surface flow past arbitrary topography and an inverse approach for wave-free solutions [J].
Binder, Benjamin J. ;
Blyth, M. G. ;
McCue, Scott W. .
IMA JOURNAL OF APPLIED MATHEMATICS, 2013, 78 (04) :685-696
[9]  
Boukari D, 2001, ABSTR APPL ANAL, V6, P413, DOI [10.1155/S1085337501000677, DOI 10.1155/S1085337501000677]
[10]   OPEN CHANNEL FLOWS WITH SUBMERGED OBSTRUCTIONS [J].
DIAS, F ;
VANDENBROECK, JM .
JOURNAL OF FLUID MECHANICS, 1989, 206 :155-170