Influence of different coating structures on the oxidation resistance of MoSi2 coatings

被引:43
|
作者
Liu, L. [1 ,2 ]
Zhang, H. Q. [1 ,2 ]
Lei, H. [1 ]
Li, H. Q. [3 ]
Gong, J. [1 ]
Sun, C. [1 ]
机构
[1] Chinese Acad Sci, Inst Met Res, 72Wenhua Rd, Shenyang 110016, Peoples R China
[2] Univ Sci & Technol China, Sch Mat Sci & Engn, 96 Jinzhai Rd, Hefei 230026, Peoples R China
[3] China Acad Launch Vehicle Technol, Aerosp Res Inst Mat & Proc Technol, Beijing 100076, Peoples R China
关键词
Niobium-based alloy; Intermetallics; Pack cementation; Coating; Oxidation resistance; MO SUBSTRATE; BEHAVIOR; MOLYBDENUM; TEMPERATURE; MICROSTRUCTURE; DEPOSITION; METALS; ALLOY; AIR;
D O I
10.1016/j.ceramint.2019.11.055
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Two different structures of MoSi2 coatings were prepared on Niobium based alloys by using a two step process. The as-deposited type(a) MoSi2 coating structure consists of a MoSi2 layer on the surface and a NbSi2 layer underneath, while the type(b) MoSi2 coating consists of an outer MoSi2 layer and an inner unsiliconized Mo layer. The oxidation behaviors of the two different types MoSi2 coatings were examined at 1200 degrees C for 100 h in air, and the mass gains of type(a) and type(b) MoSi2 coated specimens were 0.64 mg/cm(2) and 0.59 mg/cm(2) respectively. The excellent oxidation resistance of both type(a) and type(b) MoSi2 coated samples at 1200 degrees C was due to the formation of a dense and continuous SiO2 scale during oxidation. As the CTE mismatch between the outer MoSi2 coating and the inner layer, cracks distributed within both type(a) and type(b) MoSi2 coating structures.
引用
收藏
页码:5993 / 5997
页数:5
相关论文
共 50 条
  • [31] MoSi2 coating on Mo substrate for short-term oxidation protection in air
    Alam, Md. Zafir
    Venkataraman, B.
    Sarma, Bijoy
    Das, Dipak K.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 487 (1-2) : 335 - 340
  • [32] Improvement of MoSi2 oxidation resistance via boron addition: Fabrication of MoB/MoSi2 composite by mechanical alloying and subsequent reactive sintering
    Taleghani, P. R.
    Bakhshi, S. R.
    Erfanmanesh, M.
    Borhani, G. H.
    Vafaei, R.
    POWDER TECHNOLOGY, 2014, 254 : 241 - 247
  • [33] High-temperature oxidation of MoSi2
    Sharif, A. A.
    JOURNAL OF MATERIALS SCIENCE, 2010, 45 (04) : 865 - 870
  • [34] The influence of water vapor on the oxidation of MoSi2 at 450°C
    Hansson, K
    Svensson, JE
    Halvarsson, M
    Tang, JE
    Sundberg, M
    Pompe, R
    HIGH TEMPERATURE CORROSION AND PROTECTION OF MATERIALS 5, PTS 1 AND 2, 2001, 369-3 : 419 - 426
  • [35] Fracture toughness of thermally sprayed MoSi2 composite with different melting indices
    Sun, Jia
    Fu, Qian-Gang
    Huo, Cai-Xia
    Li, Tao
    COMPOSITES PART B-ENGINEERING, 2018, 150 : 242 - 247
  • [36] Comparative study on high-temperature oxidation behavior of MoSi2 and MoSi2/SiC-Mo2C composite coatings on Mo substrates at 1300 °C
    Huang, Yan
    Zhai, Ruixiong
    Huang, Taihong
    Pei, Hezhong
    He, Xuan
    Wan, Fayang
    Song, Peng
    SURFACE & COATINGS TECHNOLOGY, 2023, 458
  • [37] Microstructure and oxidation resistance of Si-MoSi2 ceramic coating on TZM (Mo-0.5Ti-0.1Zr-0.02C) alloy at 1500°C
    Zhang, Yingyi
    Yu, Laiho
    Fu, Tao
    Wang, Jie
    Shen, Fuqiang
    Cui, Kunkun
    Wang, Hong
    SURFACE & COATINGS TECHNOLOGY, 2022, 431
  • [38] Effect of relative density on cyclic oxidation resistance properties of MoSi2
    颜建辉
    李益民
    张厚安
    Journal of Central South University of Technology, 2008, (03) : 301 - 304
  • [39] MoSi2 Oxidation in 670-1498 K Water Vapor
    Wood, Elizabeth Sooby
    Parker, Stephen S.
    Nelson, Andrew T.
    Maloy, Stuart A.
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2016, 99 (04) : 1412 - 1419
  • [40] Microstructure and oxidation behaviour of MoSi2 coating combined MoB diffusion barrier layer on Mo substrate at 1300 °C
    Zhai, Ruixiong
    Song, Peng
    Huang, Taihong
    Li, Chao
    Hua, Chen
    Huang, Wenlang
    Li, Qing
    Zheng, Biju
    Lu, Jiansheng
    CERAMICS INTERNATIONAL, 2021, 47 (07) : 10137 - 10146