Impact of zero-valent iron nanoparticles on the activity of anaerobic granular sludge: From macroscopic to microcosmic investigation

被引:118
|
作者
He, Chuan-Shu [1 ]
He, Pan-Pan [1 ]
Yang, Hou-Yun [1 ]
Li, Ling-Li [1 ]
Lin, Yue [2 ]
Mu, Yang [1 ]
Yu, Han-Qing [1 ]
机构
[1] Univ Sci & Technol China, Dept Chem, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, CAS Key Lab Urban Pollutant Convers, Hefei, Anhui, Peoples R China
[2] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Anaerobic granular sludge(AGS); Extracellular polymeric substances (EPS); Methane; Nano zero-valence iron (nZVI); EXTRACELLULAR POLYMERIC SUBSTANCES; BIOLOGICAL PHOSPHORUS REMOVAL; WASTE ACTIVATED-SLUDGE; SULFATE REDUCTION; WATER TREATMENT; ESCHERICHIA-COLI; SEWAGE-SLUDGE; PERFORMANCE; DIGESTION; REACTORS;
D O I
10.1016/j.watres.2017.09.061
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The study aimed at evaluating the influence of nano zero-valent iron (nZVI) on the activity of anaerobic granular sludge (AGS) from both macroscopic and microcosmic aspects using different methodologies. The tolerance response of AGS to nZVI was firstly investigated using short-term and long-term experiments, and also compared with anaerobic flocs. The Fe fate and distribution, the change of contents/ structure of extracellular polymeric substances (EPS), and the variation of microbial community in the AGS after exposure to nZVI were further explored. Contrary to the anaerobic floc, insignificant inhibition of nZVI at dosage lower than 30 mmoL/L on the activity of AGS was observed. Additionally, the extra hydrogen gas released from the oxidation of nZVI was presumably suggested to stimulate the hydro-genotrophic methanogenesis process, resulting in 30% methane production enhancement when exposure to 30 mmoL/L nZVI. The microscopic analysis indicated that nZVI particles were mainly adsorbed on the surface of AGS in the form of iron oxides aggregation without entering into the interior of the granule, protecting most cells from contact damage. Moreover, surrounded EPS located outer surface of anaerobic granule could react with nZVI to accelerate the corrosion of nZVI and slow down H-2 release from nZVI dissolution, thus further weakening the toxicity of nZVI to anaerobic microorganisms. The decrease in bacteria involved in glucose degradation and aceticlastic methanogens as well as the increase of hydrogenotrophic methanogens indicated a H-2 mediated shift toward the hydrogenotrophic pathway enhancing the CH4 production. (c) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:32 / 40
页数:9
相关论文
共 50 条
  • [1] Effect of nanoscale zero-valent iron on the change of sludge anaerobic digestion process
    Zhou, Jun
    You, Xiaogang
    Jia, Tongtong
    Niu, Baowei
    Gong, Lei
    Yang, Xiaoqi
    Zhou, Ying
    ENVIRONMENTAL TECHNOLOGY, 2020, 41 (24) : 3199 - 3209
  • [2] Enhancement of methanogenic activity in anaerobic digestion of high solids sludge by nano zero-valent iron
    Zhou, Jun
    You, Xiaogang
    Niu, Baowei
    Yang, Xiaoqi
    Gong, Lei
    Zhou, Ying
    Wang, Jin
    Zhang, Haonan
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 703
  • [3] Anaerobic Corrosion of Zero-Valent Iron at Elevated Temperatures
    Metzgen, Adrian D.
    Dahmke, Andreas
    Ebert, Markus
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2021, 55 (12) : 8010 - 8019
  • [4] Enhancing the performance and stability of the anaerobic digestion of sewage sludge by zero valent iron nanoparticles dosage
    Cordova Lizama, Alfredo
    Carrera Figueiras, Cristian
    Zepeda Pedreguera, Alejandro
    Ruiz Espinoza, Juan Enrique
    BIORESOURCE TECHNOLOGY, 2019, 275 : 352 - 359
  • [5] Enhancing the Biogas Production of Sludge Anaerobic Digestion by a Combination of Zero-Valent Iron Foil and Persulfate
    Hu, Yangqing
    Wang, Fei
    Lv, Guojun
    Chi, Yong
    ENERGY & FUELS, 2019, 33 (08) : 7436 - 7442
  • [6] Sludge deep dewatering enhanced by zero-valent iron/peroxymonosulfate/walnut shell powder
    Zhang, Yanping
    He, Miaolin
    Xue, Xieping
    Li, Fen
    Lv, Ning
    Dong, Jinghao
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2023, 40 (08) : 1919 - 1927
  • [7] Impact of zero valent iron on blackwater anaerobic digestion
    Xu, Rui
    Xu, Shengnan
    Zhang, Lei
    Fiorentino, Anna Patricya
    Yang, Zhaohui
    Liu, Yang
    BIORESOURCE TECHNOLOGY, 2019, 285
  • [8] Zero valent iron enhances methane production from primary sludge in anaerobic digestion
    Wei, Wei
    Cai, Zhengqing
    Fu, Jie
    Xie, Guo-Jun
    Li, Ang
    Zhou, Xu
    Ni, Bing-Jie
    Wang, Dongbo
    Wang, Qilin
    CHEMICAL ENGINEERING JOURNAL, 2018, 351 : 1159 - 1165
  • [9] Impact of initial sludge pH on enhancing the dewaterability of waste activated sludge by zero-valent iron-activated peroxydisulphate
    Xiao, Yifan
    Lu, Yi
    Zheng, Guanyu
    Zhou, Lixiang
    ENVIRONMENTAL TECHNOLOGY, 2021, 42 (16) : 2573 - 2586
  • [10] Application of zero-valent iron/sulfite system for aerobically digested sludge conditioning
    Liu, Changgeng
    Chen, Dandan
    Chen, Xiao'e
    Wu, Bin
    CHEMICAL ENGINEERING JOURNAL, 2021, 420