A BAYESIAN MODEL SELECTION APPROACH TO FMRI ACTIVATION DETECTION

被引:11
作者
Seghouane, Abd-Krim [1 ]
Ong, Ju Lynn [1 ]
机构
[1] Australian Natl Univ, Coll Engn & Comp Sci, Canberra, ACT, Australia
来源
2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING | 2010年
关键词
Functional MRI; Activation Detection; Bayesian Information Criterion; FUNCTIONAL MRI; BRAIN;
D O I
10.1109/ICIP.2010.5653354
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A fundamental question in functional MRI (fMRI) data analysis is to declare pixels either activated or non-activated with respect to the experimental design. A new statistical test for detecting activated pixels in fMRI data is proposed. The test is based on comparing the dimension of the parametric models fitted to the voxels fMRI time series data with and without controlled activation-baseline pattern. The Bayesian information criterion, is used for this comparison. This test has the advantage of not requiring any user-specified threshold to be estimated. The effectiveness of the proposed fMRI activation detection method is illustrated on real experimental data.
引用
收藏
页码:4401 / 4404
页数:4
相关论文
共 18 条
[1]  
Akaike H., 1978, APPL TIME SERIES ANA
[2]  
[Anonymous], SINGLE SUBJECT EPOCH
[3]  
[Anonymous], ENCY STAT SCI
[4]   Statistical methods for detecting activated regions in functional MRI of the brain [J].
Ardekani, BA ;
Kanno, I .
MAGNETIC RESONANCE IMAGING, 1998, 16 (10) :1217-1225
[5]   Activation detection in functional MRI using subspace modeling and maximum likelihood estimation [J].
Ardekani, BA ;
Kershaw, J ;
Kashikura, K ;
Kanno, I .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1999, 18 (02) :101-114
[6]   PROCESSING STRATEGIES FOR TIME-COURSE DATA SETS IN FUNCTIONAL MRI OF THE HUMAN BRAIN [J].
BANDETTINI, PA ;
JESMANOWICZ, A ;
WONG, EC ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1993, 30 (02) :161-173
[7]   FUNCTIONAL MAPPING OF THE HUMAN VISUAL-CORTEX BY MAGNETIC-RESONANCE-IMAGING [J].
BELLIVEAU, JW ;
KENNEDY, DN ;
MCKINSTRY, RC ;
BUCHBINDER, BR ;
WEISSKOFF, RM ;
COHEN, MS ;
VEVEA, JM ;
BRADY, TJ ;
ROSEN, BR .
SCIENCE, 1991, 254 (5032) :716-719
[8]  
Box G. E. P., 1992, BAYESIAN INFERENCE S, DOI DOI 10.1002/9781118033197.CH4
[9]  
Friston K., 2013, SPM8
[10]  
Friston KJ., 1995, HUM BRAIN MAP, V2, P1