Central Limit Theorem and Diophantine Approximations

被引:7
作者
Bobkov, Sergey G. [1 ]
机构
[1] Univ Minnesota, Sch Math, 127 Vincent Hall,206 Church St SE, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
Central limit theorem; Diophantine approximation; Edgeworth expansions;
D O I
10.1007/s10959-017-0770-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let F-n denote the distribution function of the normalized sum Z(n) = (X-1+ ... +X-n)/(sigma root n) of i.i.d. random variables with finite fourth absolute moment. In this paper, polynomial rates of convergence of F-n to the normal law with respect to the Kolmogorov distance, as well as polynomial approximations of F-n by the Edgeworth corrections (modulo logarithmically growing factors in n), are given in terms of the characteristic function of X-1. Particular cases of the problem are discussed in connection with Diophantine approximations.
引用
收藏
页码:2390 / 2411
页数:22
相关论文
共 50 条
  • [31] Fisher information and the central limit theorem
    Sergey G. Bobkov
    Gennadiy P. Chistyakov
    Friedrich Götze
    Probability Theory and Related Fields, 2014, 159 : 1 - 59
  • [32] Central limit theorem for the Edwards model
    van der Hofstad, R
    den Hollander, F
    König, W
    ANNALS OF PROBABILITY, 1997, 25 (02) : 573 - 597
  • [33] On strong versions of the central limit theorem
    Rychlik, Z
    Szuster, KS
    STATISTICS & PROBABILITY LETTERS, 2003, 61 (04) : 347 - 357
  • [34] A central limit theorem for integer partitions
    Manfred Madritsch
    Stephan Wagner
    Monatshefte für Mathematik, 2010, 161 : 85 - 114
  • [35] A CENTRAL LIMIT THEOREM FOR THE KPZ EQUATION
    Hairer, Martin
    Shen, Hao
    ANNALS OF PROBABILITY, 2017, 45 (6B) : 4167 - 4221
  • [36] RENYI DIVERGENCE AND THE CENTRAL LIMIT THEOREM
    Bobkov, S. G.
    Chistyakov, G. P.
    Goerzet, F.
    ANNALS OF PROBABILITY, 2019, 47 (01) : 270 - 323
  • [37] On the central limit theorem for f (nkx)
    Aistleitner, Christoph
    Berkes, Istvan
    PROBABILITY THEORY AND RELATED FIELDS, 2010, 146 (1-2) : 267 - 289
  • [38] On a central limit theorem in renewal theory
    Janson, Svante
    STATISTICS & PROBABILITY LETTERS, 2024, 204
  • [39] A Central Limit Theorem for punctuated equilibrium
    Bartoszek, K.
    STOCHASTIC MODELS, 2020, 36 (03) : 473 - 517
  • [40] ON ASYMPTOTIC EXPANSIONS IN THE CENTRAL LIMIT THEOREM
    Sobolev, V. N.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2008, 52 (03) : 456 - 469