The graphs with all but two eigenvalues equal to ±1

被引:0
|
作者
Cioaba, Sebastian M. [1 ]
Haemers, Willem H. [2 ]
Vermette, Jason R. [1 ]
Wong, Wiseley [3 ]
机构
[1] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
[2] Tilburg Univ, Dept Econometr & Operat Res, NL-5000 LE Tilburg, Netherlands
[3] Univ Calif San Diego, Dept Math, San Diego, CA 92103 USA
关键词
Graph; Adjacency matrix; Friendship graph; Spectral characterization;
D O I
10.1007/s10801-014-0557-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine all graphs whose adjacency matrices have at most two eigenvalues (multiplicities included) different from +/- 1 and decide which of these graphs are determined by their spectrum. This includes the so-called friendship graphs, which consist of a number of edge-disjoint triangles meeting in one vertex. It turns out that the friendship graph is determined by its spectrum, except when the number of triangles equals sixteen.
引用
收藏
页码:887 / 897
页数:11
相关论文
共 50 条
  • [1] Signed Graphs with All But Two Eigenvalues Equal to ±1
    Wang, Dijian
    Hou, Yaoping
    Li, Deqiong
    GRAPHS AND COMBINATORICS, 2023, 39 (04)
  • [2] Bipartite graphs with all but two eigenvalues equal to 0 and ±1
    Li, Xiaohong
    Wang, Jianfeng
    Brunetti, Maurizio
    DISCRETE MATHEMATICS, 2024, 347 (04)
  • [3] The graphs with all but two eigenvalues equal to-2 or 0
    Cioaba, Sebastian M.
    Haemers, Willem H.
    Vermette, Jason R.
    DESIGNS CODES AND CRYPTOGRAPHY, 2017, 84 (1-2) : 153 - 163
  • [4] On claw-free graphs with all but four eigenvalues equal to 0 or-1
    Sun, Shaowei
    Chen, Mengsi
    DISCRETE APPLIED MATHEMATICS, 2024, 353 : 71 - 84
  • [5] On signed graphs with at most two eigenvalues unequal to ±1
    Haemers, Willem H.
    Topcu, Hatice
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 670 : 68 - 77
  • [6] On graphs with at most three Laplacian eigenvalues greater than or equal to two
    Petrovic, M
    Borovicanin, B
    Torgasev, A
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 380 : 173 - 184
  • [7] The signed graphs with two eigenvalues unequal to ±1
    Haemers, Willem H.
    Topcu, Hatice
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 463
  • [8] The graphs with all but two eigenvalues equal to ±1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm 1$$\end{document}
    Sebastian M. Cioabă
    Willem H. Haemers
    Jason R. Vermette
    Wiseley Wong
    Journal of Algebraic Combinatorics, 2015, 41 (3) : 887 - 897
  • [9] On the two largest Q-eigenvalues of graphs
    Wang, JianFeng
    Belardo, Francesco
    Huang, QiongXiang
    Borovicanin, Bojana
    DISCRETE MATHEMATICS, 2010, 310 (21) : 2858 - 2866
  • [10] On Signed Graphs with Two Distinct Eigenvalues
    Ghasemian, E.
    Fath-Tabar, H.
    FILOMAT, 2017, 31 (20) : 6393 - 6400