Patterned sparse random matrices: A moment approach

被引:3
作者
Banerjee, Debapratim [1 ]
Bose, Arup [2 ]
机构
[1] Univ Penn, Dept Stat, 3730 Walnut St, Philadelphia, PA 19104 USA
[2] Indian Stat Inst, Stat & Math Unit, 203 BT Rd, Kolkata 700108, India
关键词
Sparse random matrix; eigenvalues; limiting spectral distribution; weak convergence; moment method; Wigner matrix; Symmetric Circulant matrix; Hankel matrix; Reverse Circulant matrix; Toeplitz matrix; largest eigenvalue; spectral norm; LARGEST EIGENVALUE;
D O I
10.1142/S2010326317500113
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider four specific n x n sparse patterned random matrices, namely the Symmetric Circulant, Reverse Circulant, Toeplitz and the Hankel matrices. The entries are assumed to be Bernoulli with success probability p(n) such that np(n) -> xi with 0 < xi < infinity. We use the moment approach to show that the expected empirical spectral distribution (EESD) converges weakly for all these sparse matrices. Unlike the Sparse Wigner matrices, here the random empirical spectral distribution (ESD) converges weakly to a random distribution. This weak convergence is only in the distribution sense. We give explicit description of the random limits of the ESD for Reverse Circulant and Circulant matrices. As in the non-sparse case, explicit description of the limits appears to be difficult to obtain in the Toeplitz and Hankel cases. We provide some properties of these limits. We then study the behavior of the largest eigenvalue of these matrices. We prove that for the Reverse Circulant and Symmetric Circulant matrices the limit distribution of the largest eigenvalue is a multiple of the Poisson. For Toeplitz and Hankel matrices we show that the non-degenerate limit distribution exists, but again it does not seem to be easy to obtain any explicit description.
引用
收藏
页数:40
相关论文
共 22 条
[1]  
Abramowitz M., 1970, Handbook of Mathematical Functions
[2]  
Anderson Greg W, 2010, INTRO RANDOM MATRICE
[3]  
[Anonymous], 1926, FONCTIONS QUASIANALY
[4]  
Bai ZD, 1999, STAT SINICA, V9, P611
[5]   Random incidence matrices: Moments of the spectral density [J].
Bauer, M ;
Golinelli, O .
JOURNAL OF STATISTICAL PHYSICS, 2001, 103 (1-2) :301-337
[6]  
Bordenave C., 2013, MEAN QUANTUM PERCOLA
[7]   Limiting spectral distribution of a special circulant [J].
Bose, A ;
Mitra, J .
STATISTICS & PROBABILITY LETTERS, 2002, 60 (01) :111-120
[8]   Another look at the moment method for large dimensional random matrices [J].
Bose, Arup ;
Sen, Arnab .
ELECTRONIC JOURNAL OF PROBABILITY, 2008, 13 :588-628
[9]  
Bose A, 2010, PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL IV: INVITED LECTURES, P2203
[10]   Spectral Norm of Circulant-Type Matrices [J].
Bose, Arup ;
Hazra, Rajat Subhra ;
Saha, Koushik .
JOURNAL OF THEORETICAL PROBABILITY, 2011, 24 (02) :479-516