Sugeno integral and geometric inequalities

被引:43
作者
Roman-Flores, Heriberto
Chalco-Cano, Yurilev
机构
[1] Univ Tarapaca, Inst Alta Invest, Arica, Chile
[2] Univ Tarapaca, Dept Matemat, Arica, Chile
关键词
convex sets; concave fuzzy measures; sugeno integral;
D O I
10.1142/S0218488507004340
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we prove a Prekopa-Leindler type inequality for the Sugeno integral. More precisely, if 0 < lambda < 1 and h ((1 - lambda)x + lambda y) >= f(x)(1-lambda) g(y)(lambda), for all x, y is an element of R-n, where h, f and g are nonnegative mu-measurable functions on R-n, then f(Rn) hd mu >= (f(Rn) fd mu) Lambda (f(Rn) gd mu), for any concave fuzzy measure mu. Also, we derive a general Brunn-Minkowski inequality (standard form) for any homogeneous quasiconcave fuzzy measure mu on R-n.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 10 条
[1]   Linear non-additive set-functions [J].
Bouchon-Meunier, B ;
Mesiar, R ;
Ralescu, DA .
INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2004, 33 (01) :89-98
[2]  
CORDEROERAUSQUI.D, IN PRESS ANN FAC SCI
[3]   The Brunn-Minkowski inequality [J].
Gardner, RJ .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 39 (03) :355-405
[4]   Set defuzzification and Choquet integral [J].
Ogura, Y ;
Li, SM ;
Ralescu, DA .
INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2001, 9 (01) :1-12
[5]  
Prekopa A., 2013, Stochastic programming, V324
[6]   THE FUZZY INTEGRAL [J].
RALESCU, D ;
ADAMS, G .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1980, 75 (02) :562-570
[7]  
Román-Flores H, 2003, COMPUT MATH APPL, V46, P1245, DOI [10.1016/S0898-1221(03)90215-X, 10.1016/S0898-1221(03)00356-0]
[8]   On the level-continuity of fuzzy integrals [J].
RomanFlores, H ;
FloresFranulic, A ;
Bassanezi, RC ;
RojasMedar, M .
FUZZY SETS AND SYSTEMS, 1996, 80 (03) :339-344
[9]  
Sugeno M, 1974, Doctoral Thesis
[10]  
Wang Z., 1992, Fuzzy Measure Theory