Strong solutions of non-colliding particle systems

被引:39
作者
Graczyk, Piotr [1 ]
Malecki, Jacek [2 ]
机构
[1] Univ Angers, LAREMA, Angers, France
[2] Wroclaw Univ Technol, Dept Math, Fac Fundamental Problems Technol, PL-50370 Wroclaw, Poland
关键词
stochastic differential equation; strong solution; non-colliding particle system; BROWNIAN-MOTION; EIGENVALUES;
D O I
10.1214/EJP.v19-3842
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study systems of stochastic differential equations describing positions x(1),...,x(p) of p ordered particles, with inter-particles repulsions of the form H-ij(x(i),x(j))/x(i) - x(j). We show the existence of strong and pathwise unique non-colliding solutions of the system with a colliding initial point x(1)(0) <= ... <= x(p)(0) in the whole generality, under natural assumptions on the coefficients of the equations.
引用
收藏
页数:21
相关论文
共 23 条
[1]  
Bru M., 1991, J. Theor. Probab, V4, P725, DOI [/10.1007/BF01259552, DOI 10.1007/BF01259552]
[2]   DIFFUSIONS OF PERTURBED PRINCIPAL COMPONENT ANALYSIS [J].
BRU, MF .
JOURNAL OF MULTIVARIATE ANALYSIS, 1989, 29 (01) :127-136
[3]   Diffusing particles with electrostatic repulsion [J].
Cepa, E ;
Lepingle, D .
PROBABILITY THEORY AND RELATED FIELDS, 1997, 107 (04) :429-449
[4]  
Chybiryakov O., 2008, Harmonic and Stochastic Analysis of Dunkl Processes
[5]   Skew-product representations of multidimensional Dunkl Markov processes [J].
Chybiryakov, Oleksandr .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2008, 44 (04) :593-611
[6]   Radial Dunkl processes: Existence, uniqueness and hitting time [J].
Demni, Nizar .
COMPTES RENDUS MATHEMATIQUE, 2009, 347 (19-20) :1125-1128
[7]   A BROWNIAN-MOTION FOR EIGENVALUES OF A RANDOM MATRIX [J].
DYSON, FJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1962, 3 (06) :1191-+
[8]  
epa E. C, 2001, ESAIM-PROBAB STAT, V5, P203
[9]  
Forrester P. J., 2010, LONDON MATH SOC MONO, V34
[10]   Brownian motion in a Weyl chamber, non-colliding particles, and random matrices [J].
Grabiner, DJ .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1999, 35 (02) :177-204