Enhancing ionic conductivity of solid electrolyte by lithium substitution in halogenated Li-Argyrodite

被引:79
作者
Zhang, Zhuoran [1 ,2 ]
Zhang, Jianxing [1 ]
Jia, Huanhuan [1 ,2 ]
Peng, Linfeng [1 ,3 ]
An, Tao [1 ,2 ]
Xie, Jia [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Elect & Elect Engn, State Key Lab Adv Electromagnet Engn & Technol, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc Die & Mould Technol, Wuhan 430074, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Peoples R China
基金
中国博士后科学基金;
关键词
Solid electrolyte; Argyrodite; Lithium substitution; Ionic conductivity; STATE LITHIUM; CHALLENGES; BATTERIES; PROGRESS; LI6PS5X; GLASS;
D O I
10.1016/j.jpowsour.2019.227601
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The demand for batteries with high safety and high energy density produces considerable efforts toward the development of all-solid-batteries and solid state electrolytes. Halogen-substituted lithium argyrodites, Li6PS5X (X = Cl, Br), represent a class of promising and suitable sulfide-based solid electrolytes with high conductivity and good processability. To further extend the scope and better understand the structure-property relationship, we systematically explore the effect of partial substitution of Li+ by other cations in Li6PS5X (X = Cl, Br). The Xray diffraction (XRD) analysis shows the possibility of successful substitution at Li+ position by various cations. Among them, substitution with a small amount of Al3+ in Li6PS5Br is confirmed by Rietveld refinements. The ionic conductivity is improved by almost three times to 2.4 x 10(-3) S cm(-1). This improvement is attributed to the shortened distances of inter-cage jumps. In addition, the substituted sample shows better electrochemical performance in all-solid-state batteries. This work demonstrates the feasibility of performance improvement by manipulating the position of Li+ in the structure of lithium argyrodites, which provides a versatile approach toward designing better performing solid electrolytes.
引用
收藏
页数:7
相关论文
共 37 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application [J].
Chen, Shaojie ;
Xie, Dongjiu ;
Liu, Gaozhan ;
Mwizerwa, Jean Pierre ;
Zhang, Qiang ;
Zhao, Yanran ;
Xu, Xiaoxiong ;
Yao, Xiayin .
ENERGY STORAGE MATERIALS, 2018, 14 :58-74
[3]   Li6PS5X:: A class of crystalline Li-rich solids with an unusually high Li+ mobility [J].
Deiseroth, Hans-Joerg ;
Kong, Shiao-Tong ;
Eckert, Hellmut ;
Vannahme, Julia ;
Reiner, Christof ;
Zaiss, Torsten ;
Schlosser, Marc .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (04) :755-758
[4]   Sol-gel synthesis and electrical properties of Li5La3Ta2O12 lithium ionic conductors [J].
Gao, Y. X. ;
Wang, X. P. ;
Wang, W. G. ;
Fang, Q. F. .
SOLID STATE IONICS, 2010, 181 (1-2) :33-36
[5]   Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries [J].
Gao, Zhonghui ;
Sun, Huabin ;
Fu, Lin ;
Ye, Fangliang ;
Zhang, Yi ;
Luo, Wei ;
Huang, Yunhui .
ADVANCED MATERIALS, 2018, 30 (17)
[6]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603
[7]   Superionic lithium conductor with a cubic argyrodite-type structure in the Li-Al-Si-S system [J].
Huang, Wenze ;
Yoshino, Kazuhiro ;
Hori, Satoshi ;
Suzuki, Kota ;
Yonemura, Masao ;
Hirayama, Masaaki ;
Kanno, Ryoji .
JOURNAL OF SOLID STATE CHEMISTRY, 2019, 270 :487-492
[8]   HIGH IONIC-CONDUCTIVITY IN LITHIUM LANTHANUM TITANATE [J].
INAGUMA, Y ;
CHEN, LQ ;
ITOH, M ;
NAKAMURA, T ;
UCHIDA, T ;
IKUTA, H ;
WAKIHARA, M .
SOLID STATE COMMUNICATIONS, 1993, 86 (10) :689-693
[9]   Synthesis and structure of novel lithium-ion conductor Li7Ge3PS12 [J].
Inoue, Yuki ;
Suzuki, Kota ;
Matsui, Naoki ;
Hirayama, Masaaki ;
Kanno, Ryoji .
JOURNAL OF SOLID STATE CHEMISTRY, 2017, 246 :334-340
[10]  
Janek J, 2016, NAT ENERGY, V1, DOI [10.1038/nenergy.2016.141, 10.1038/NENERGY.2016.141]