Pointwise estimates for lagrange interpolation polynomials

被引:0
作者
Xie, T. F. [1 ]
机构
[1] China Jiliang Univ, Dept Informat & Math Sci, Hangzhou 310018, Peoples R China
关键词
approximation rate; Lagrange interpolation; pointwise estimate;
D O I
10.1007/s10474-007-6066-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f is an element of C[-1, 1]. Let the approximation rate of Lagrange interpolation polynomial of f based on the nodes {cos 2k-1/2n pi} boolean OR {-1, 1} be Delta(n+2)(f, x). In this paper we study the estimate of Delta(n+2)(f, x), that keeps the interpolation property. As a result we prove that Delta(n+2)(f, x) = Omicron(1) {omega(f, root 1-x(2)/n)vertical bar T-n(x)vertical bar ln (n + 1) + omega(f, root 1-x(2)/n vertical bar T-n(x)vertical bar)}, where T-n(x) = cos (n arccos x) is the Chebeyshev polynomial of first kind. Also, if f is an element of C-r[-1, 1] with r >= 1, then Delta(n+2)(f, x) = Omicron(1) {root 1-x(2)/n(r)vertical bar T-n(x)vertical bar omega(f((r)),root 1-x(2)/n) ((root 1-x(2) + 1/n)(r-1) ln(n + 1) + 1)}.
引用
收藏
页码:77 / 89
页数:13
相关论文
共 6 条
[1]   On generalized Hermite-Fejer interpolation of Lagrange type on the Chebyshev nodes [J].
Byrne, GJ ;
Mills, TM ;
Smith, SJ .
JOURNAL OF APPROXIMATION THEORY, 2000, 105 (02) :263-278
[2]  
KIS O, 1968, ANN U SCI BUDAP, V11, P27
[3]  
Mastroianni G., 1993, RENDICONTI CIRC MATH, P375
[4]  
Xie TF., 1998, APPROXIMATION THEORY
[5]  
[谢庭藩 Xie Tingfan], 2003, [数学研究与评论, Journal of Mathematical Research and Exposition], V23, P177
[6]  
ZHU LY, 2006, ANAL THEORY APPL, V22, P183