Limit cycles in a Lienard system with a cusp and a nilpotent saddle of order 7

被引:6
作者
Asheghi, R. [1 ]
Bakhshalizadeh, A. [1 ]
机构
[1] Isfahan Univ Technol, Dept Math Sci, Esfahan 8415683111, Iran
关键词
NEAR-HAMILTONIAN SYSTEMS; DIFFERENTIAL-EQUATIONS; MELNIKOV FUNCTIONS; HOMOCLINIC LOOP; BIFURCATIONS; UNIQUENESS;
D O I
10.1016/j.chaos.2015.01.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we first give the topological classification of level curves for a special Lienard system. Then we study the number of limit cycles of some polynomial Lienard systems with a cuspidal loop surrounded by a loop that is connected (homoclinic) to a nilpotent saddle. We prove that H(5, 6) >= 9,H(6,6) >= 10 and H(7,6) >= 11, where H(m,n) is the maximal number of limit cycles in a Lienard system of type (m, n). (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:120 / 128
页数:9
相关论文
共 25 条
[1]  
[Anonymous], 1928, REV GENERALE LELECTR, DOI DOI 10.1016/J.JWEIA.2013.09.002
[2]  
Blows TR, 1984, MATH P CAMB PHILOS S, V95, P59
[3]   Small-amplitude limit cycle bifurcations for Lienard systems with quadratic or cubic damping or restoring forces [J].
Christopher, C ;
Lynch, S .
NONLINEARITY, 1999, 12 (04) :1099-1112
[4]  
Coppel WA., 1989, Dynamics Reported, P61, DOI 10.1007/978-3-322-96657-5_3
[5]   CUBIC LIENARD EQUATIONS WITH LINEAR DAMPING [J].
DUMORTIER, F ;
ROUSSEAU, C .
NONLINEARITY, 1990, 3 (04) :1015-1039
[6]   On the uniqueness of limit cycles surrounding one or more singularities for Lienard equations [J].
Dumortier, F ;
Li, CZ .
NONLINEARITY, 1996, 9 (06) :1489-1500
[7]   Quadratic Lienard equations with quadratic damping [J].
Dumortier, F ;
Li, CZ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 139 (01) :41-59
[8]   Complete hyperelliptic integrals of the first kind and their non-oscillation [J].
Gavrilov, L ;
Iliev, ID .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (03) :1185-1207
[9]  
Han M., 1999, Ann. Differ. Equat, V15, P113
[10]   Small-amplitude limit cycles of polynomial Li,nard systems [J].
Han MaoAn ;
Tian Yun ;
Yu Pei .
SCIENCE CHINA-MATHEMATICS, 2013, 56 (08) :1543-1556