Deep learning for hologram generation

被引:40
作者
Liu, Sheng-Chi [1 ]
Chu, Daping [1 ]
机构
[1] Univ Cambridge, Ctr Photon Devices & Sensors, Dept Engn, 9 JJ Thomson Ave, Cambridge CB3 0FA, England
基金
英国工程与自然科学研究理事会;
关键词
PHASE; IMAGE;
D O I
10.1364/OE.418803
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This work exploits deep learning to develop real-time hologram generation. We propose an original concept of introducing hologram modulators to allow the use of generative models to interpret complex-valued frequency data directly. This new mechanism enables the pre-trained learning model to generate frequency samples with variations in the underlying generative features. To achieve an object-based hologram generation, we also develop a new generative model, named the channeled variational autoencoder (CVAE). The pre-trained CVAE can then interpret and learn the hidden structure of input holograms. It is thus able to generate holograms through the learning of the disentangled latent representations, which can allow us to specify each disentangled feature for a specific object. Additionally, we propose a new technique called hologram super-resolution (HSR) to super-resolve a low-resolution hologram input to a super-resolution hologram output. Combining the proposed CVAE and HSR, we successfully develop a new approach to generate super-resolved, complex-amplitude holograms for 3D scenes. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License.
引用
收藏
页码:27373 / 27395
页数:23
相关论文
共 27 条
[1]  
Benton S.A., 2008, Holographic Imaging, DOI DOI 10.1038/srep06211
[2]  
Bishop C. M., 2006, PATTERN RECOGN
[3]  
Burgess C. P., 2017, 2017 NIPS WORKSH LEA
[4]   Image Super-Resolution Using Deep Convolutional Networks [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) :295-307
[5]   DeepCGH: 3D computer-generated holography using deep learning [J].
Eybposh, M. Hossein ;
Caira, Nicholas W. ;
Atisa, Mathew ;
Chakravarthula, Praneeth ;
Pegard, Nicolas C. .
OPTICS EXPRESS, 2020, 28 (18) :26636-26650
[6]   PHASE RETRIEVAL ALGORITHMS - A COMPARISON [J].
FIENUP, JR .
APPLIED OPTICS, 1982, 21 (15) :2758-2769
[7]  
GERCHBERG RW, 1972, OPTIK, V35, P237
[8]   Deep-learning-based binary hologram [J].
Goi, Hiroaki ;
Komuro, Koshi ;
Nomura, Takanori .
APPLIED OPTICS, 2020, 59 (23) :7103-7108
[9]  
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
[10]  
Goodman J.W., 2017, Introduction to Fourier Optics, Vfourth