Totally disconnected, locally compact groups as geometric objects

被引:9
作者
Baumgartner, Udo [1 ]
机构
[1] Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2308, Australia
来源
GEOMETRIC GROUP THEORY | 2007年
关键词
totally disconnected group; automorphism group; scale function; flat subgroup; eigenfactor; flat rank; rank of CAT(0)-space; space of directions; Tits metric; contraction group;
D O I
10.1007/978-3-7643-8412-8_1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This survey outlines a geometric approach to the structure theory of totally disconnected, locally compact groups. The content of my talk at Geneva is contained in Section 3.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 16 条
[1]   The direction of an automorphism of a totally disconnected locally compact group [J].
Baumgartner, U ;
Willis, GA .
MATHEMATISCHE ZEITSCHRIFT, 2006, 252 (02) :393-428
[2]   Contraction groups and scales of automorphisms of totally disconnected locally compact groups [J].
Baumgartner, U ;
Willis, GA .
ISRAEL JOURNAL OF MATHEMATICS, 2004, 142 (1) :221-248
[3]  
BAUMGARTNER U, 2004, GROUPS FLAT RANK MOS, V1
[4]  
BAUMGARTNER U, 2005, IN PRESS TRANSFORMAT
[5]  
Bourdon M, 1997, GEOM FUNCT ANAL, V7, P245, DOI 10.1007/PL00001619
[6]  
BRIDSON M, 1999, CURVATURE, V319
[7]  
CAPRACE PE, GEOMETRIC FLATS CAT
[8]  
Gromov M., 1993, LONDON MATH SOC LECT, V2, P1
[9]  
HEWITT E, 1979, ABSTRACT HARMONIC AN, V1
[10]   The local structure of length spaces with curvature bounded above [J].
Kleiner, B .
MATHEMATISCHE ZEITSCHRIFT, 1999, 231 (03) :409-456