Nuclear reaction cross sections for proton therapy applications

被引:10
作者
Enferadi, Milad [1 ]
Sarbazvatan, Saber [2 ]
Sadeghi, Mahdi [3 ]
Hong, Ji- [4 ,5 ]
Tung, Chuan-Jong [1 ,6 ]
Chao, Tsi-Chian [1 ,6 ]
Lee, Chung-Chi [1 ,4 ]
Wey, Shiaw-Pyng [1 ]
机构
[1] Chang Gung Univ, Dept Med Imaging & Radiol Sci, Coll Med, Taoyuan 333, Taiwan
[2] Univ Porto, Fac Ciencias, Rua Campo Alegre, P-4169007 Oporto, Portugal
[3] Iran Univ Med Sci, Sch Med, Dept Med Phys, Tehran, Iran
[4] Chang Gung Mem Hosp, Dept Radiat Oncol, Taoyuan 333, Taiwan
[5] Chang Gung Univ, Inst Radiol Res, Radiat Biol Res Ctr, Chang Gung Mem Hosp, Taoyuan 333, Taiwan
[6] Chang Gung Univ, Inst Radiol Res, Med Phys Res Ctr, Chang Gung Mem Hosp, Taoyuan 333, Taiwan
关键词
Proton therapy; Secondary particles; TALYS; EMPIRE; INCL plus; Excitation functions; MEDIUM-ENERGY PROTONS; GAMMA-RAY PRODUCTION; EXCITATION-FUNCTIONS; INDUCED RADIOACTIVITY; NUCLIDE PRODUCTION; RADIATION-THERAPY; PARTICLE SPECTRA; ARGON ISOTOPES; LIGHT-NUCLEI; NE ISOTOPES;
D O I
10.1007/s10967-017-5503-8
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Nuclear reactions of high-energy protons with treatment equipment, air, and patient tissue during proton therapy generate residual radioactivity and secondary particles including protons, deuterons, alphas, and neutrons. The most up-to-date versions of INCL++ (v5.2.9), TALYS (v1.8), EMPIRE (v3.2.2 Malta), and ALICE/ASH were used in this study to calculate the excitation functions of proton-induced reactions with carbon, nitrogen, oxygen, aluminum, calcium, iron, nickel, copper, zinc, tin, tungsten, and lead nuclei. The cross sections of different nuclear reaction mechanisms, gamma particles, and residual radionuclides were calculated. The obtained results were compared with available experimental data and the ENDF/B-VII.1.
引用
收藏
页码:1207 / 1235
页数:29
相关论文
共 100 条
[41]  
JOHANSSON A, 1961, ARK FYS, V19, P527
[42]  
Jung P., 1991, C NUCL DAT SCI TECHN, P352
[43]   Preequilibrium reactions with complex particle channels [J].
Kalbach, C .
PHYSICAL REVIEW C, 2005, 71 (03)
[44]  
Kelic A., 2008, INDCNDC0530, P181
[45]   γ-ray production by inelastic proton scattering on 16O and 12C [J].
Kiener, J ;
Berheide, M ;
Achouri, NL ;
Boughrara, A ;
Coc, A ;
Lefebvre, A ;
Santos, FDO ;
Vieu, C .
PHYSICAL REVIEW C, 1998, 58 (04) :2174-2179
[46]   Secondary radiation doses of intensity-modulated radiotherapy and proton beam therapy in patients with lung and liver cancer [J].
Kim, Seonkyu ;
Min, Byung Jun ;
Yoon, Myonggeun ;
Kim, Jinsung ;
Shin, Dong Ho ;
Lee, Se Byeong ;
Park, Sung Yong ;
Cho, Sungkoo ;
Kim, Dae Hyun .
RADIOTHERAPY AND ONCOLOGY, 2011, 98 (03) :335-339
[47]   FARADAY-CUP MEASUREMENT OF PROTON TOTAL REACTION CROSS SECTIONS AT 100 MEV [J].
KIRKBY, P ;
LINK, WT .
CANADIAN JOURNAL OF PHYSICS, 1966, 44 (08) :1847-&
[48]  
Koning A.J., 2017, TALYS 1 8
[49]   Local and global nucleon optical models from 1 keV to 200 MeV [J].
Koning, AJ ;
Delaroche, JP .
NUCLEAR PHYSICS A, 2003, 713 (3-4) :231-310
[50]   Range verification methods in particle therapy: underlying physics and Monte Carlo modeling [J].
Kraan, Aafke Christine .
FRONTIERS IN ONCOLOGY, 2015, 5