High energy superstable hybrid capacitor with a self-regulated Zn/electrolyte interface and 3D graphene-like carbon cathode

被引:22
作者
Chodankar, Nilesh R. [1 ]
Patil, Swati J. [1 ]
Lee, Sangjin [1 ]
Lee, Jaeho [1 ]
Hwang, Seung-Kyu [2 ,3 ]
Shinde, Pragati A. [4 ]
Bagal, Indrajit, V [5 ]
Karekar, Smita, V [2 ,3 ]
Raju, Ganji Seeta Rama [1 ]
Ranjith, Kugalur Shanmugam [1 ]
Dubal, Deepak P. [6 ]
Huh, Yun-Suk [2 ,3 ]
Han, Young-Kyu [1 ]
机构
[1] Dongguk Univ Seoul, Dept Energy & Mat Engn, Seoul 04620, South Korea
[2] Inha Univ, NanoBio High Tech Mat Res Ctr, Dept Biol Engn, Incheon 22212, South Korea
[3] Inha Univ, Dept Biol Sci & Bioengn, Incheon, South Korea
[4] Univ Sharjah, Res Inst Sci & Engn, Sharjah, U Arab Emirates
[5] Chonnam Natl Univ, Dept Phys, Gwangju, South Korea
[6] Queensland Univ Technol QUT, Ctr Mat Sci, Sch Chem & Phys, 2 George St, Brisbane, Qld 4000, Australia
基金
新加坡国家研究基金会;
关键词
electrolyte additive; graphene-like carbon; interface; multivalent ion capacitor; zinc; LITHIUM-ION BATTERY; IN-SALT ELECTROLYTE; SUPERCAPACITORS; CHEMISTRY; EFFICIENT; AEROGELS;
D O I
10.1002/inf2.12344
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Rechargeable aqueous zinc ion hybrid capacitors (ZIHCs), as an up-and-comer aqueous electrochemical energy storage system, endure in their infancy because of the substandard reversibility of Zn anodes, structural deterioration of cathode materials, and narrow electrochemical stability window. Herein, a scalable approach is described that addresses Zn-anode/electrolyte interface and cathode materials associated deficiencies and boosts the electrochemical properties of ZIHCs. The Zn-anode/electrolyte interface is self-regulated by alteration of the traditional Zn2+ electrolyte with Na-based supporting salt without surrendering the cost, safety, and green features of the Zn-based system which further validates the excellent reversibility over 1100 h with suppressed hydrogen evolution. The deficits of cathode materials were overcome by using a high-mass loaded, oxygen-rich, 3D, multiscaled graphene-like carbon (3D MGC) cathode. Due to the multiscaled texture, high electronic conductivity, and oxygen-rich functional groups of 3D MGC, reversible redox capacitance was obtained with a traditional adsorption/desorption mechanism. Prototype ZIHCs containing the modified electrolyte and an oxygen-rich 3D MGC cathode resulted in battery-like specific energy (203 Wh kg(-1) at 1.6 A g(-1)) and supercapacitor-type power capability (4.9 kW kg(-1) at 8 A g(-1)) with outstanding cycling durability (96.75% retention over 30 000 cycles at 10 A g(-1)). These findings pave the way toward the utilization of highly efficient ZIHCs for practical applications.
引用
收藏
页数:16
相关论文
共 71 条
[1]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[2]   A low-cost "water-in-salt" electrolyte for a 2.3 V high-rate carbon-based supercapacitor [J].
Bu, Xudong ;
Su, Lijun ;
Dou, Qingyun ;
Lei, Shulai ;
Yan, Xingbin .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (13) :7541-7547
[3]   Carbon reactions and effects on valve-regulated lead-acid (VRLA) battery cycle life in high-rate, partial state-of-charge cycling [J].
Bullock, Kathryn R. .
JOURNAL OF POWER SOURCES, 2010, 195 (14) :4513-4519
[4]   A High-Rate and Stable Quasi-Solid-State Zinc-Ion Battery with Novel 2D Layered Zinc Orthovanadate Array [J].
Chao, Dongliang ;
Zhu, Changrong ;
Song, Ming ;
Liang, Pei ;
Zhang, Xiao ;
Nguyen Huy Tiep ;
Zhao, Haofei ;
Wang, John ;
Wang, Rongming ;
Zhang, Hua ;
Fan, Hong Jin .
ADVANCED MATERIALS, 2018, 30 (32)
[5]   A Room-Temperature Molten Hydrate Electrolyte for Rechargeable Zinc-Air Batteries [J].
Chen, Chih-Yao ;
Matsumoto, Kazuhiko ;
Kubota, Keigo ;
Hagiwara, Rika ;
Xu, Qiang .
ADVANCED ENERGY MATERIALS, 2019, 9 (22)
[6]   A 63 m Superconcentrated Aqueous Electrolyte for High-Energy Li-Ion Batteries [J].
Chen, Long ;
Zhang, Jiaxun ;
Li, Qin ;
Vatamanu, Jenel ;
Ji, Xiao ;
Pollard, Travis P. ;
Cui, Chunyu ;
Hou, Singyuk ;
Chen, Ji ;
Yang, Chongyin ;
Ma, Lin ;
Ding, Michael S. ;
Garaga, Mounesha ;
Greenbaum, Steve ;
Lee, Hung-Sui ;
Borodin, Oleg ;
Xu, Kang ;
Wang, Chunsheng .
ACS ENERGY LETTERS, 2020, 5 (03) :968-974
[7]  
Chen TY, 2016, SCI REP-UK, V6, DOI [10.1038/srep20335, 10.1038/srep33486, 10.1038/srep20001, 10.1038/srep24253]
[8]   ATR-FTIR spectroscopic studies on aqueous LiClO4, NaClO4, and Mg(ClO4)2 solutions [J].
Chen, Y ;
Zhang, YH ;
Zhao, LJ .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2004, 6 (03) :537-542
[9]   Supercapacitors operated at extremely low environmental temperatures [J].
Chodankar, Nilesh R. ;
Patil, Swati J. ;
Hwang, Seung Kyu ;
Karekar, Smita, V ;
Jayaramulu, Kolleboyina ;
Zhang, Wenli ;
Dubal, Deepak P. ;
Huh, Yun Suk ;
Han, Young-Kyu .
JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (47) :26603-26627
[10]   Solution-free self-assembled growth of ordered tricopper phosphide for efficient and stable hybrid supercapacitor [J].
Chodankar, Nilesh R. ;
Shinde, Pragati A. ;
Patil, Swati J. ;
Hwang, Seung-Kyu ;
Raju, Ganji Seeta Rama ;
Ranjith, Kugalur Shanmugam ;
Dubal, Deepak P. ;
Huh, Yun Suk ;
Han, Young-Kyu .
ENERGY STORAGE MATERIALS, 2021, 39 :194-202