Leibniz homology of dialgebras of matrices

被引:32
作者
Frabetti, A [1 ]
机构
[1] Univ Bologna, Dipartmento Matemat, I-40127 Bologna, Italy
关键词
D O I
10.1016/S0022-4049(97)00066-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A dialgebra D is a vector space with two associative operations (sic), proves satisfying three more relations. By setting [x, y] := x (sic) y - y proves x, any dialgebra gives rise to a Leibniz algebra. Here we compute the Leibniz homology of the dialgebra of matrices gI(D) with entries in a given dialgebra D. We show that HL(gI(D)) is isomorphic to the tensor module over HHS(D), which is a variation of the natural dialgebra homology HHY(D). (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:123 / 141
页数:19
相关论文
共 15 条
[1]  
[Anonymous], 1992, CYCLIC HOMOLOGY GRUN
[2]  
[Anonymous], ANN I FOURIER
[3]  
CUVIER C, 1994, ANN SCI ECOLE NORM S, V27, P1
[4]  
FRABETTI A, UNPUB COHOMOLOGY DIA
[5]  
FRABETTI A, IN PRESS C R ACAD SC
[6]  
FRESSE B, 1996, COGROUPS ALGEBRAS OP
[8]  
Koszul J.-L., 1985, Asterisque, V131, P257
[9]   CYCLIC HOMOLOGY AND THE LIE-ALGEBRA HOMOLOGY OF MATRICES [J].
LODAY, JL ;
QUILLEN, D .
COMMENTARII MATHEMATICI HELVETICI, 1984, 59 (04) :565-591
[10]   HOMOLOGY OF SYMPLECTIC AND ORTHOGONAL ALGEBRAS [J].
LODAY, JL ;
PROCESI, C .
ADVANCES IN MATHEMATICS, 1988, 69 (01) :93-108