A convex decomposition theorem for 4-manifolds

被引:0
|
作者
Akbulut, S [1 ]
Matveyev, R
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[2] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:371 / 381
页数:11
相关论文
共 50 条
  • [1] Kahler decomposition of 4-manifolds
    Baykur, R. Inanc
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2006, 6 : 1239 - 1265
  • [2] Pair of pants decomposition of 4-manifolds
    Golla, Marco
    Martelli, Bruno
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2017, 17 (03): : 1407 - 1444
  • [3] Convex plumbings in closed hyperbolic 4-manifolds
    Bruno Martelli
    Stefano Riolo
    Leone Slavich
    Geometriae Dedicata, 2021, 212 : 243 - 259
  • [4] Convex plumbings in closed hyperbolic 4-manifolds
    Martelli, Bruno
    Riolo, Stefano
    Slavich, Leone
    GEOMETRIAE DEDICATA, 2021, 212 (01) : 243 - 259
  • [5] An integrability theorem for almost Kahler 4-manifolds
    Apostolov, V
    Draghici, T
    Kotschick, D
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (05): : 413 - 418
  • [6] AN OPEN COLLAR-THEOREM FOR 4-MANIFOLDS
    GUILBAULT, CR
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 331 (01) : 227 - 245
  • [7] An Upper and a Lower Bound Theorem for Combinatorial 4-Manifolds
    E. Sparla
    Discrete & Computational Geometry, 1998, 19 : 575 - 593
  • [8] A decomposition theorem for h-cobordant smooth simply-connected compact 4-manifolds
    Curtis, CL
    Freedman, MH
    Hsiang, WC
    Stong, R
    INVENTIONES MATHEMATICAE, 1996, 123 (02) : 343 - 348
  • [9] An upper and a lower bound theorem for combinatorial 4-manifolds
    Sparla, E
    DISCRETE & COMPUTATIONAL GEOMETRY, 1998, 19 (04) : 575 - 593
  • [10] A gap theorem for Ricci-flat 4-manifolds
    Bhattacharya, Atreyee
    Seshadri, Harish
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2015, 40 : 269 - 277