Data Calibration and Quasi-LPV Unknown Input Observer: Powered Two-Wheeled Vehicle

被引:0
作者
Fouka, M. [1 ]
Nehaoua, L. [1 ]
Arioui, H. [1 ]
机构
[1] Evry Val dEssonne UEVE Paris Saclay Univ, Informat Integrat Bioinformat & Complex Syst Lab, 40 Rue Pelvoux, F-91020 Evry, France
来源
2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC) | 2020年
关键词
Quasi-LPV Observer; ISS stability; PTWV; MOTORCYCLE STATE ESTIMATION; STABILITY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is dedicated to the powered twowheeled vehicle (PTWV) lateral dynamics estimation. Differently from common unknown input observer (UIO) approaches reported in the literature, which considers constant output matrix and exact premise variables, this work takes into account the real measurement provided in the body-fixed frame. This consideration leads to a nonlinear parameter-dependent output equation with unmeasurable premise variables in the UIO design. The observer convergence and stability study are established by considering a quadratic Lyapunov function associated with the Input to State Stability (ISS) to guaranty boundedness of the state estimation errors. Sufficient conditions are given in terms of linear matrix inequalities (LMIs). Finally, the performances and applicability of the proposed approach are evaluated by co-simulation using BikeSim (c) high-fidelity motorcycle simulator.
引用
收藏
页码:3921 / 3926
页数:6
相关论文
共 14 条
[1]  
Boniolo I, 2012, IEEE INT SYMP CIRC S, P2573, DOI 10.1109/ISCAS.2012.6271830
[2]   RETRACTED: Robust Observer Design for Unknown Inputs Takagi-Sugeno Models (Retracted Article) [J].
Chadli, Mohammed ;
Karimi, Hamid Reza .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2013, 21 (01) :158-164
[3]  
Cossalter V., 2006, MOTORCYCLE DYNAMICS, V2nd
[4]  
Evangelos B., 2010, FRENCH NATL AGENCY W
[5]  
Flanigan E., 2018, TECH REP
[6]  
Fouka M, 2018, IEEE DECIS CONTR P, P3018, DOI 10.1109/CDC.2018.8619637
[7]  
Gelmini S, 2018, IEEE INT C INTELL TR, P1751, DOI 10.1109/ITSC.2018.8569762
[8]  
Ichalal D., 2015, IFAC - Papers Online, V48, P1030, DOI 10.1016/j.ifacol.2015.09.662
[9]   On input-to-state stability of min-max nonlinear model predictive control [J].
Lazar, M. ;
De la Pena, D. Munoz ;
Heemels, W. P. M. H. ;
Alamo, T. .
SYSTEMS & CONTROL LETTERS, 2008, 57 (01) :39-48
[10]   Unknown input observer for LPV systems [J].
Marx, Benoit ;
Ichalal, Dalil ;
Ragot, Jose ;
Maquin, Didier ;
Mammar, Said .
AUTOMATICA, 2019, 100 :67-74