Bell polynomials and generalized Blissard problems

被引:2
作者
Germano, Bruna [1 ]
Martinelli, Maria Renata [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Metodi & Modelli Matemat Sci Appl, I-00161 Rome, Italy
关键词
Differentiation of composite functions; Bell polynomials; Blissard problem;
D O I
10.1016/j.mcm.2010.11.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We introduce two possible generalizations of the classical Blissard problem and we show how to solve them by using the second order and multi-dimensional Bell polynomials, whose most important properties are recalled. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:964 / 969
页数:6
相关论文
共 11 条
[1]   PRACTICAL FORMULAS FOR THE CALCULUS OF MULTIVARIABLE ADOMIAN POLYNOMIALS [J].
ABBAOUI, K ;
CHERRUAULT, Y ;
SENG, V .
MATHEMATICAL AND COMPUTER MODELLING, 1995, 22 (01) :89-93
[2]  
[Anonymous], 1980, MATEMATICHE
[3]  
[Anonymous], 1958, An Introduction to Combinatorial Analysis
[4]   Exponential polynomials [J].
Bell, ET .
ANNALS OF MATHEMATICS, 1934, 35 :258-277
[5]   Multidimensional bell polynomials of higher order [J].
Bernardini, A ;
Natalini, P ;
Ricci, PE .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 50 (10-12) :1697-1708
[6]  
Bruschi P. E., 1980, Rend. Mat., V13, P507
[7]  
KENDALL KMG, 1958, ADV THEORY STAT
[8]  
Kurosh A., 1971, COURS ALGEBRE SUPERI
[9]   Bell polynomials and binomial type sequences [J].
Mihoubi, Miloud .
DISCRETE MATHEMATICS, 2008, 308 (12) :2450-2459
[10]  
Natalini P, 2004, COMPUT MATH APPL, V47, P719, DOI 10.1016/S0898-1221(04)00060-4