Enhanced Thermal Conductivity in a Nanostructured Phase Change Composite due to Low Concentration Graphene Additives

被引:386
作者
Yavari, Fazel [1 ]
Fard, Hafez Raeisi [1 ]
Pashayi, Kamyar [1 ]
Rafiee, Mohammad A. [1 ]
Zamiri, Amir [1 ]
Yu, Zhongzhen [3 ]
Ozisik, Rahmi [2 ]
Borca-Tasciuc, Theodorian [1 ]
Koratkar, Nikhil [1 ]
机构
[1] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA
[2] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA
[3] Beijing Univ Chem Technol, Coll Mat Sci & Engn, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
基金
美国国家科学基金会;
关键词
ENERGY STORAGE; GRAPHITE NANOPLATELET; HEAT-FLOW; RESISTANCE;
D O I
10.1021/jp200838s
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The liquid-solid phase change enthalpy, crystallization, and thermal conductivity of graphene/1-octadecanol (stearyl alcohol) composite, a nanostructured phase change material, was investigated as a function of graphene content. The thermal conductivity (kappa) of the nanocomposite increased by nearly 2.5-fold (similar to 140% increase) upon similar to 4% (by weight) graphene addition while the drop in the heat of fusion (i.e., storage capacity) was only similar to 15.4%. The enhancement in thermal properties of 1-octadecanol obtained with the addition of graphene is markedly superior to the effect of other nanofillers such as silver nanowires and carbon nanotubes reported previously in the literature. Boosting the thermal conductivity of organic phase change materials without incurring a significant loss in the heat of fusion is one of the key issues in enabling their practical application as latent heat storage/release units for thermal management and thermal protection.
引用
收藏
页码:8753 / 8758
页数:6
相关论文
共 30 条
[1]   LOW-TEMPERATURE LATENT-HEAT THERMAL-ENERGY STORAGE - HEAT-STORAGE MATERIALS [J].
ABHAT, A .
SOLAR ENERGY, 1983, 30 (04) :313-332
[2]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[3]   Recent advance in functionalized graphene/polymer nanocomposites [J].
Cai, Dongyu ;
Song, Mo .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (37) :7906-7915
[4]   Large-scale graphene production by RF-cCVD method [J].
Dervishi, Enkeleda ;
Li, Zhongrui ;
Watanabe, Fumiya ;
Biswas, Abhijit ;
Xu, Yang ;
Biris, Alexandru R. ;
Saini, Viney ;
Biris, Alexandru S. .
CHEMICAL COMMUNICATIONS, 2009, (27) :4061-4063
[5]   Thermoelectric cooling and power generation [J].
DiSalvo, FJ .
SCIENCE, 1999, 285 (5428) :703-706
[6]   Single-layer graphene nanosheets with controlled grafting of polymer chains [J].
Fang, Ming ;
Wang, Kaigang ;
Lu, Hongbin ;
Yang, Yuliang ;
Nutt, Steven .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (10) :1982-1992
[7]   Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites [J].
Ganguli, Sabyasachi ;
Roy, Ajit K. ;
Anderson, David P. .
CARBON, 2008, 46 (05) :806-817
[8]   Review on sustainable thermal energy storage technologies, part I: Heat storage materials and techniques [J].
Hasnain, SM .
ENERGY CONVERSION AND MANAGEMENT, 1998, 39 (11) :1127-1138
[9]   Interfacial heat flow in carbon nanotube suspensions [J].
Huxtable, ST ;
Cahill, DG ;
Shenogin, S ;
Xue, LP ;
Ozisik, R ;
Barone, P ;
Usrey, M ;
Strano, MS ;
Siddons, G ;
Shim, M ;
Keblinski, P .
NATURE MATERIALS, 2003, 2 (11) :731-734
[10]   Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets [J].
Kalaitzidou, Kyriaki ;
Fukushima, Hiroyuki ;
Drzal, Lawrence T. .
CARBON, 2007, 45 (07) :1446-1452