WEAK AND STRONG CONVERGENCE THEOREMS FOR STRICTLY PSEUDONONSPREADING MAPPINGS AND EQUILIBRIUM PROBLEM IN HILBERT SPACES

被引:0
作者
Butsan, Thanwarat [1 ]
机构
[1] Thammasat Univ, Fac Sci & Technol, Dept Math & Stat, Rangsit Ctr, Pathum Thani 12120, Thailand
关键词
k-strictly pseudononspreading mappings; nonspreading mappings; fixed points; strong convergence; equilibrium problem; Hilbert spaces; FIXED-POINT THEOREMS; NONLINEAR MAPPINGS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to prove a convergence theorem for finding common fixed point of a countable family of k-srictly pseudononspreading mappings and equilibrium point of a bifunction. Moreover, some numerical example of the proposed method is also given. The main results of the paper improve and extend those in the literature.
引用
收藏
页码:311 / 320
页数:10
相关论文
共 13 条
[1]   Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space [J].
Aoyama, Koji ;
Kimura, Yasunori ;
Takahashi, Wataru ;
Toyoda, Masashi .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (08) :2350-2360
[2]  
Blum E., 1994, Math. Student, V63, P123
[3]   CONSTRUCTION OF FIXED POINTS OF NONLINEAR MAPPINGS IN HILBERT SPACE [J].
BROWDER, FE ;
PETRYSHY.WV .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1967, 20 (02) :197-&
[4]  
Combettes PL, 2005, J NONLINEAR CONVEX A, V6, P117
[5]   Approximating common fixed points of nonexpansive mappings and nonspreading mappings in a Hilbert space [J].
Iemoto, Shigeru ;
Takahashi, Wataru .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) :E2082-E2089
[6]  
Igarashi T., 2009, NONLINEAR ANAL OPTIM, P75
[7]   Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces [J].
Kohsaka, Fumiaki ;
Takahashi, Wataru .
ARCHIV DER MATHEMATIK, 2008, 91 (02) :166-177
[8]   Weak and strong convergence theorems for relatively nonexpansive mappings in Banach spaces [J].
Matsushita S.-Y. ;
Takahashi W. .
Fixed Point Theory and Applications, 2004 (1) :37-47
[9]  
Osilike M. O., 2010, NONLINEAR ANAL, V125, P3641
[10]  
Takahashi W, 2010, J NONLINEAR CONVEX A, V11, P79