Feedback control of flow-induced vibration of a sphere

被引:12
|
作者
McQueen, T. [1 ]
Zhao, J. [1 ]
Sheridan, J. [1 ]
Thompson, M. C. [1 ]
机构
[1] Monash Univ, Dept Mech & Aerosp Engn, FLAIR, Melbourne, Vic 3800, Australia
关键词
flow-structure interactions; wakes; VORTEX-INDUCED VIBRATIONS; TRANSVERSELY ROTATING SPHERE; ELASTICALLY MOUNTED SPHERE; TETHERED SPHERE; SQUARE CYLINDER; WAKE; SUPPRESSION; OSCILLATION; DYNAMICS; ANGLES;
D O I
10.1017/jfm.2020.47
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The flow-induced vibration of a sphere elastically mounted in the cross-flow direction with imposed feedback rotation was investigated experimentally. The application of rotation provides a means to exercise control over the vibration response of axisymmetric three-dimensional objects. Both the rotational amplitude, which was imposed in proportion to sphere transverse displacement, and the phase of the control signal were varied over a broad parameter space comprising: a non-dimensionalised proportional gain (); rotation phase (), which is the phase between the applied sphere rotation and the transverse displacement; and reduced velocity (). The corresponding Reynolds number range was (). The structural vibration, fluid forces and wake structure were examined to characterise the effect of the imposed rotation. It was found that the rotation not only altered the magnitude of the vibration response, either amplifying or attenuating the response depending on operating conditions, but it also altered the reduced velocity at which vibrations commenced, the vibration frequency and periodicity and significantly altered the phase between the transverse fluid force and displacement. It was possible to almost completely suppress the vibration in the mode I, mode II and mode III transition regimes for imposed rotation over the ranges , and , respectively. In particular, this could be achieved at effective rotation rates well below those required by using open-loop control (Sareen et al., J. Fluid Mech., vol. 837, 2018, pp. 258-292). Past the peak of mode II, a 'galloping-like' response, similar to that reported by Vicente-Ludlam et al. (J. Fluid Mech., vol. 847, 2018, pp. 93-118) for the circular cylinder, was observed with an increase in vibration amplitude of up to 368 % at the highest reduced velocity tested (). Particle image velocimetry measurements revealed a change in the timing and spatial position of the streamwise vortex structures with imposed rotation. Contrary to what has been observed for the circular cylinder, however, no de-synchronisation between vortex shedding and sphere motion was observed.
引用
收藏
页码:A301 / A3032
页数:32
相关论文
共 50 条
  • [1] The effect of imposed rotary oscillation on the flow-induced vibration of a sphere
    Sareen, A.
    Zhao, J.
    Sheridan, J.
    Hourigan, K.
    Thompson, M. C.
    JOURNAL OF FLUID MECHANICS, 2018, 855 : 703 - 735
  • [2] Passive control of flow-induced vibration of a sphere using a trip wire
    Sareen, Anchal
    Hourigan, Kerry
    Thompson, Mark C.
    JOURNAL OF FLUIDS AND STRUCTURES, 2024, 124
  • [3] Transverse flow-induced vibrations of a sphere
    Rajamuni, Methana M.
    Thompson, Mark C.
    Hourigan, Kerry
    JOURNAL OF FLUID MECHANICS, 2018, 837 : 931 - 966
  • [4] Experimental investigation of flow-induced vibration and flow field characteristics of a flexible triangular cylinder
    Mousavisani, Seyedmohammad
    Samandari, Hamed
    Seyed-Aghazadeh, Banafsheh
    JOURNAL OF FLUID MECHANICS, 2024, 979
  • [5] Experimental investigation of in-line flow-induced vibration of a rotating circular cylinder
    Zhao, J.
    Lo Jacono, D.
    Sheridan, J.
    Hourigan, K.
    Thompson, M. C.
    JOURNAL OF FLUID MECHANICS, 2018, 847 : 664 - 699
  • [6] Flow-induced vibration control of a circular cylinder using rotational oscillation feedback
    Vicente-Ludlam, D.
    Barrero-Gil, A.
    Velazquez, A.
    JOURNAL OF FLUID MECHANICS, 2018, 847 : 93 - 118
  • [7] Experimental investigation of flow-induced vibration of a rotating circular cylinder
    Wong, K. W. L.
    Zhao, J.
    Lo Jacono, D.
    Thompson, M. C.
    Sheridan, J.
    JOURNAL OF FLUID MECHANICS, 2017, 829 : 486 - 511
  • [8] Experimental investigation of flow-induced vibration of a sinusoidally rotating circular cylinder
    Wong, K. W. L.
    Zhao, J.
    Lo Jacono, D.
    Thompson, M. C.
    Sheridan, J.
    JOURNAL OF FLUID MECHANICS, 2018, 848 : 430 - 466
  • [9] Control of flow-induced vibration of a circular cylinder with a porous splitter plate
    Chen, Jingle
    Wu, Jie
    OCEAN ENGINEERING, 2023, 281
  • [10] Vortex-induced vibration of a rotating sphere
    Sareen, A.
    Zhao, J.
    Lo Jacono, D.
    Sheridan, J.
    Hourigan, K.
    Thompson, M. C.
    JOURNAL OF FLUID MECHANICS, 2018, 837 : 258 - 292