MHD Boundary Layers Theory in Sobolev Spaces Without Monotonicity I: Well-Posedness Theory

被引:78
作者
Liu, Cheng-Jie [1 ]
Xie, Feng [2 ,3 ]
Yang, Tong [4 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Nat Sci, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, LSC, MOE, Shanghai 200240, Peoples R China
[4] City Univ Hong Kong, Dept Math, Tat Chee Ave, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
NAVIER-STOKES EQUATION; ZERO VISCOSITY LIMIT; PRANDTL EQUATIONS; ILL-POSEDNESS; ANALYTIC SOLUTIONS; GLOBAL EXISTENCE; HALF-SPACE; SYSTEM; EULER; FLOW;
D O I
10.1002/cpa.21763
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the well-posedness theory for the MHD boundary layer. The boundary layer equations are governed by the Prandtl-type equations that are derived from the incompressible MHD system with non-slip boundary condition on the velocity and perfectly conducting condition on the magnetic field. Under the assumption that the initial tangential magnetic field is not zero, we establish the local-i-time existence, uniqueness of solutions for the nonlinear MHD boundary layer equations. Compared with the well-posedness theory of the classical Prandtl equations for which the monotonicity condition of the tangential velocity plays a crucial role, this monotonicity condition is not needed for the MHD boundary layer. This justifies the physical understanding that the magnetic field has a stabilizing effect on MHD boundary layer in rigorous mathematics. (c) 2018 Wiley Periodicals, Inc.
引用
收藏
页码:63 / 121
页数:59
相关论文
共 40 条
[1]  
Alexandre R, 2015, J AM MATH SOC, V28, P745
[2]   Existence of electromagnetic-hydrodynamic waves [J].
Alfven, H .
NATURE, 1942, 150 :405-406
[3]  
Arhipov V. N., 1959, SOV PHYS DOKL, V4, p[1199, 751]
[4]  
Cowling T.G., 1957, Magnetohydrodynamics
[5]  
Davidson P. A., 2001, INTRO MAGNETOHYDRODY, P431, DOI [DOI 10.1017/CB09780511626333, 10.1017/CBO9780511626333, DOI 10.1017/CBO9780511626333]
[7]  
DUVAUT G, 1972, ARCH RATION MECH AN, V46, P241
[8]   Formal derivation and stability analysis of boundary layer models in MHD [J].
Gerard-Varet, D. ;
Prestipino, M. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (03)
[9]   Remarks on the ill-posedness of the Prandtl equation [J].
Gerard-Varet, D. ;
Nguyen, T. .
ASYMPTOTIC ANALYSIS, 2012, 77 (1-2) :71-88
[10]  
Gerard-Varet D., 2016, ARXIV160706434MATHAP