Condensed hydrogen for thermonuclear fusion

被引:55
作者
Kucheyev, S. O. [1 ]
Hamza, A. V. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, Livermore, CA 94551 USA
关键词
INERTIAL CONFINEMENT FUSION; LOW-TEMPERATURE PLASTICITY; SOLID DEUTERIUM-TRITIUM; NIF IGNITION TARGETS; POROUS VYCOR GLASS; MATRIX-ISOLATION SPECTROSCOPY; LIQUID-FUEL LAYER; RADIOACTIVELY INDUCED SUBLIMATION; MULTIPLE SHADOWGRAPH VIEWS; CRYOGENIC ICF TARGET;
D O I
10.1063/1.3489943
中图分类号
O59 [应用物理学];
学科分类号
摘要
Inertial confinement fusion (ICF) power, in either pure fusion or fission-fusion hybrid reactors, is a possible solution for future world's energy demands. Formation of uniform layers of a condensed hydrogen fuel in ICF targets has been a long standing materials physics challenge. Here, we review the progress in this field. After a brief discussion of the major ICF target designs and the basic properties of condensed hydrogens, we review both liquid and solid layering methods, physical mechanisms causing layer nonuniformity, growth of hydrogen single crystals, attempts to prepare amorphous and nanostructured hydrogens, and mechanical deformation behavior. Emphasis is given to current challenges defining future research areas in the field of condensed hydrogens for fusion energy applications. (C) 2010 American Institute of Physics. [doi:10.1063/1.3489943]
引用
收藏
页数:28
相关论文
共 241 条
  • [1] Cryogenic fuel targets for inertial fusion: Optimization of fabrication and delivery conditions
    Aleksandrova, I. V.
    Koresheva, E. R.
    Osipov, I. E.
    Bazdenkov, S. V.
    Belolipetskiy, A. A.
    Chtcherbakov, V. I.
    Tirnasheva, T. P.
    Tonshin, A. A.
    Yaguzinskiy, L. S.
    Dorogotovtsev, V. M.
    Akunets, A. A.
    [J]. JOURNAL OF RUSSIAN LASER RESEARCH, 2007, 28 (03) : 207 - 235
  • [2] Survivability of fuel layers with a different structure under conditions of the environmental effects: Physical concept and modeling results
    Aleksandrova, I. V.
    Belolipetskiy, A. A.
    Koresheva, E. R.
    Tolokonnikov, S. M.
    [J]. LASER AND PARTICLE BEAMS, 2008, 26 (04) : 643 - 648
  • [3] An efficient method of fuel ice formation in moving free-standing ICF/IFE targets
    Aleksandrova, IV
    Bazdenkov, SV
    Chtcherbakov, VI
    Gromov, AI
    Koresheva, ER
    Koshelev, EA
    Osipov, IE
    Yaguzinskiy, LS
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2004, 37 (08) : 1163 - 1178
  • [4] Rapid fuel layering inside moving free-standing ICF targets: Physical model and simulation code development
    Aleksandrova, IV
    Bazdenkov, SV
    Chtcherbakov, VI
    [J]. LASER AND PARTICLE BEAMS, 2002, 20 (01) : 13 - 21
  • [5] Free-standing target technologies for ICF
    Aleksandrova, IV
    Koresheva, ER
    Osipov, IE
    Tolokonnikov, SM
    Rivkis, LA
    Veselov, VP
    Belolipetskiy, AA
    Baranov, GD
    Yaqushinskiy, LS
    [J]. FUSION TECHNOLOGY, 2000, 38 (01): : 166 - 172
  • [6] Cryogenic targets for modern ICF experiment
    Aleksandrova, IV
    Koresheva, ER
    Osipov, IE
    Panina, LV
    [J]. LASER AND PARTICLE BEAMS, 1995, 13 (04) : 539 - 557
  • [7] Free-standing targets for applications to ICF
    Aleksandrova, IV
    Koresheva, ER
    Osipov, IE
    [J]. LASER AND PARTICLE BEAMS, 1999, 17 (04) : 713 - 727
  • [8] Aleksandrovskii A.N., 1987, LOW TEMP PHYS+, V13, P623
  • [9] Plasticity of parahydrogen with reduced deuterium contents
    Alekseeva, L. A.
    [J]. LOW TEMPERATURE PHYSICS, 2007, 33 (6-7) : 504 - 506
  • [10] Low-temperature plasticity of pure parahydrogen
    Alekseeva, L. A.
    Kazakov, D. N.
    [J]. PHYSICS OF THE SOLID STATE, 2007, 49 (11) : 2104 - 2108