Clustering-based hyperspectral band selection using information measures

被引:444
作者
Martinez-Uso, Adolfo [1 ]
Pla, Filiberto [1 ]
Sotoca, Jose Martinez [1 ]
Garcia-Sevilla, Pedro [1 ]
机构
[1] Univ Jaume 1, Dept Lenguajes & Syst Informat, E-12071 Castellon de La Plana, Spain
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2007年 / 45卷 / 12期
关键词
dimensionality reduction; feature clustering; feature selection; information theory;
D O I
10.1109/TGRS.2007.904951
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral imaging involves large amounts of information. This paper presents a technique for dimensionality reduction to deal with hyperspectral images. The proposed method is based on a hierarchical clustering structure to group bands to minimize the intracluster variance and maximize the intercluster variance. This aim is pursued using information measures, such as distances based on mutual information or Kullback-Leibler divergence, in order to reduce data redundancy and nonuseful information among image bands. Experimental results include a comparison among some relevant and recent methods for hyperspectral band selection using no labeled information, showing their performance with regard to pixel image classification tasks. The technique that is presented has a stable behavior for different image data sets and a noticeable accuracy, mainly when selecting small sets of bands.
引用
收藏
页码:4158 / 4171
页数:14
相关论文
共 30 条
[1]  
Aczel J., 1975, Measures of information and their characterizations, DOI DOI 10.1016/S0076-5392(08)62737-X
[2]   SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation [J].
Blewitt, Marnie E. ;
Gendrel, Anne-Valerie ;
Pang, Zhenyi ;
Sparrow, Duncan B. ;
Whitelaw, Nadia ;
Craig, Jeffrey M. ;
Apedaile, Anwyn ;
Hilton, Douglas J. ;
Dunwoodie, Sally L. ;
Brockdorff, Neil ;
Kay, Graham F. ;
Whitelaw, Emma .
NATURE GENETICS, 2008, 40 (05) :663-669
[3]   An extension of the Jeffreys-Matusita distance to multiclass cases for feature selection [J].
Bruzzone, L ;
Roli, F ;
Serpico, SB .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1995, 33 (06) :1318-1321
[4]  
Chang C.-I., 2003, Hyperspectral Imaging: Techniques for Spectral Detection and Classification, V1
[5]   Constrained band selection for hyperspectral imagery [J].
Chang, Chein-I ;
Wang, Su .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (06) :1575-1585
[6]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[7]   A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification [J].
Chang, CI ;
Du, Q ;
Sun, TL ;
Althouse, MLG .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999, 37 (06) :2631-2641
[8]   Linear spectral random mixture analysis for hyperspectral imagery [J].
Chang, CI ;
Chiang, SS ;
Smith, JA ;
Ginsberg, IW .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (02) :375-392
[9]   NEAREST NEIGHBOR PATTERN CLASSIFICATION [J].
COVER, TM ;
HART, PE .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1967, 13 (01) :21-+
[10]  
Cover TM., 2006, Elements of information theory, DOI [10.1002/047174882X.ch2,arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/047174882X.ch2, DOI 10.1002/047174882X]