Determinantal Point Process Mixtures Via Spectral Density Approach

被引:9
作者
Bianchini, Ilaria [1 ]
Guglielmi, Alessandra [1 ]
Quintana, Fernando A. [2 ]
机构
[1] Politecn Milan, Milan, Italy
[2] Pontificia Univ Catolica Chile, Santiago, Chile
来源
BAYESIAN ANALYSIS | 2020年 / 15卷 / 01期
关键词
density estimation; nonparametric regression; repulsive mixtures; reversible jumps; MODEL;
D O I
10.1214/19-BA1150
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider mixture models where location parameters are a priori encouraged to be well separated. We explore a class of determinantal point process (DPP) mixture models, which provide the desired notion of separation or repulsion. Instead of using the rather restrictive case where analytical results are partially available, we adopt a spectral representation from which approximations to the DPP density functions can be readily computed. For the sake of concreteness the presentation focuses on a power exponential spectral density, but the proposed approach is in fact quite general. We later extend our model to incorporate covariate information in the likelihood and also in the assignment to mixture components, yielding a trade-off between repulsiveness of locations in the mixtures and attraction among subjects with similar covariates. We develop full Bayesian inference, and explore model properties and posterior behavior using several simulation scenarios and data illustrations.
引用
收藏
页码:187 / 214
页数:28
相关论文
共 36 条
[1]  
Affandi RH, 2014, PR MACH LEARN RES, V32, P1224
[2]  
[Anonymous], 2013, Advances in Neural Information Processing Systems, DOI DOI 10.48550/ARXIV.1311.2971
[3]  
[Anonymous], 2015, ADV NEURAL INFORM PR
[4]   Determinantal Point Process Mixtures Via Spectral Density Approach [J].
Bianchini, Ilaria ;
Guglielmi, Alessandra ;
Quintana, Fernando A. .
BAYESIAN ANALYSIS, 2020, 15 (01) :187-214
[5]  
BINDER DA, 1978, BIOMETRIKA, V65, P31, DOI 10.2307/2335273
[6]   Contrast Estimation for Parametric Stationary Determinantal Point Processes [J].
Biscio, Christophe Ange Napoleon ;
Lavancier, Frederic .
SCANDINAVIAN JOURNAL OF STATISTICS, 2017, 44 (01) :204-229
[7]   Quantifying repulsiveness of determinantal point processes [J].
Biscio, Christophe Ange Napoleon ;
Lavancier, Frederic .
BERNOULLI, 2016, 22 (04) :2001-2028
[8]  
Daley D., 2003, An Introduction to the Theory of Point Processes: Volume I: Elementary Theory and Methods, P19
[9]  
Daley D.J., 2007, INTRO THEORY POINT P, V2
[10]   An ANOVA model for dependent random measures [J].
De Iorio, M ;
Müller, P ;
Rosner, GL ;
MacEachern, SN .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (465) :205-215