AN ANALYSIS OF HDG METHODS FOR CONVECTION-DOMINATED DIFFUSION PROBLEMS

被引:47
|
作者
Fu, Guosheng [1 ]
Qiu, Weifeng [2 ]
Zhang, Wujun [3 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
[3] Univ Maryland, Dept Math, College Pk, MD 20742 USA
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2015年 / 49卷 / 01期
基金
美国国家科学基金会;
关键词
HDG; convection-dominated diffusion; DISCONTINUOUS GALERKIN METHOD; 2ND-ORDER ELLIPTIC PROBLEMS; SCALAR HYPERBOLIC EQUATION; FINITE ELEMENT METHODS; RESIDUAL-FREE BUBBLES; ORIGINAL DG METHOD; ERROR ANALYSIS; OPTIMAL CONVERGENCE; SPECIAL MESHES;
D O I
10.1051/m2an/2014032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present the first a priori error analysis of the h-version of the hybridizable discontinuous Galkerin (HDG) methods applied to convection-dominated diffusion problems. We show that, when using polynomials of degree no greater than k, the L-2-error of the scalar variable converges with order k + 1/2 on general conforming quasi-uniform simplicial meshes, just as for conventional DG methods. We also show that the method achieves the optimal L-2-convergence order of k + 1 on special meshes. Moreover, we discuss a new way of implementing the HDG methods for which the spectral condition number of the global matrix is independent of the diffusion coefficient. Numerical experiments are presented which verify our theoretical results.
引用
收藏
页码:225 / 256
页数:32
相关论文
共 50 条
  • [31] A STABLE MIMETIC FINITE-DIFFERENCE METHOD FOR CONVECTION-DOMINATED DIFFUSION EQUATIONS
    Adler, James H.
    Cavanaugh, Casey
    Hu, Xiaozhe
    Huang, Andy
    Traso, Nathaniel
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (06): : A2973 - A3000
  • [32] The characteristic finite volume element method for the nonlinear convection-dominated diffusion problem
    Gao, Fuzheng
    Yuan, Yirang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (01) : 71 - 81
  • [33] Analysis of the cell boundary element methods for convection dominated convection-diffusion equations
    Jeon, Youngmok
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (08) : 2469 - 2482
  • [34] A new projection-based stabilized method for steady convection-dominated convection-diffusion equations
    Chen, Gang
    Feng, Minfu
    Xie, Chunmei
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 239 : 89 - 106
  • [35] An HDG method for distributed control of convection diffusion PDEs
    Chen, Gang
    Hu, Weiwei
    Shen, Jiguang
    Singler, John R.
    Zhang, Yangwen
    Zheng, Xiaobo
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 343 : 643 - 661
  • [36] A finite element method with residual-free bubbles for convection-dominated diffusion equations
    Liu, Dajin
    Li, Wentao
    PROCEEDINGS OF FIRST INTERNATIONAL CONFERENCE OF MODELLING AND SIMULATION, VOL II: MATHEMATICAL MODELLING, 2008, : 326 - 330
  • [37] On the stabilized finite element method for steady convection-dominated problems with anisotropic mesh adaptation
    Hachem, E.
    Jannoun, G.
    Veysset, J.
    Coupez, T.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 232 : 581 - 594
  • [38] Analysis of variable-degree HDG methods for convection-diffusion equations. Part I: general nonconforming meshes
    Chen, Yanlai
    Cockburn, Bernardo
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2012, 32 (04) : 1267 - 1293
  • [39] ANALYSIS OF VARIABLE-DEGREE HDG METHODS FOR CONVECTION-DIFFUSION EQUATIONS. PART II: SEMIMATCHING NONCONFORMING MESHES
    Chen, Yanlai
    Cockburn, Bernardo
    MATHEMATICS OF COMPUTATION, 2014, 83 (285) : 87 - 111
  • [40] A Superconvergent HDG Method for Distributed Control of Convection Diffusion PDEs
    Hu, Weiwei
    Shen, Jiguang
    Singler, John R.
    Zhang, Yangwen
    Zheng, Xiaobo
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 76 (03) : 1436 - 1457