HEREDITARILY NORMAL MANIFOLDS OF DIMENSION GREATER THAN ONE MAY ALL BE METRIZABLE

被引:3
作者
Dow, Alan [1 ]
Tall, Franklin D. [2 ]
机构
[1] Univ N Carolina, Dept Math & Stat, Charlotte, NC 28223 USA
[2] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Hereditarily normal; manifold; metrizable; coherent Souslin tree; proper forcing; PFA(S)[S; locally compact; P-ideal; perfect preimage of omega(1); sequentially compact; SPACES;
D O I
10.1090/tran/7916
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
P. J. Nyikos has asked whether it is consistent that every hereditarily normal manifold of dimension greater than one is metrizable, and he proved that it is if one assumes the consistency of a supercompact cardinal, and, in addition, that the manifolds are hereditarily collectionwise Hausdorff. We are able to omit these extra assumptions.
引用
收藏
页码:6805 / 6851
页数:47
相关论文
共 33 条
[1]  
[Anonymous], GEN TOPOLOGY
[2]  
[Anonymous], COMMENT MATH U CAROL
[3]  
ARHANGELSKII AV, 1968, MICH MATH J, V15, P313
[4]  
Balogh Z., 1983, COMMENT MATH U CAROL, V24, P63
[5]  
Devlin K. J., 1974, LECT NOTES MATH, V405
[6]   ON THE CONSISTENCY OF THE MOORE-MROWKA SOLUTION [J].
DOW, A .
TOPOLOGY AND ITS APPLICATIONS, 1992, 44 (1-3) :125-141
[7]  
Dow A., 1988, TOPOLOGY P, V13, P17
[8]   ANTIDIAMOND PRINCIPLES AND TOPOLOGICAL APPLICATIONS [J].
Eisworth, Todd ;
Nyikos, Peter .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (11) :5695-5719
[9]  
Farah I., 1996, Commentationes Mathematicae Universitatis Carolinae, V37, P861
[10]   Forcing with a coherent Souslin tree and locally countable subspaces of countably tight compact spaces [J].
Fischer, A. J. ;
Tall, F. D. ;
Todorcevic, S. .
TOPOLOGY AND ITS APPLICATIONS, 2015, 195 :284-296