Exactly solved dynamics for an infinite-range spin system

被引:8
作者
Milotti, E
机构
[1] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy
[2] Ist Nazl Fis Nucl, Sez Trieste, I-33100 Udine, Italy
关键词
D O I
10.1103/PhysRevE.63.026116
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
It is well known that the dynamical evolution of a system of N spins can be viewed as a walk along the edges of an N-dimensional hypercube. I use this correspondence in an infinite-range spin system to derive a diffusion equation for the magnetization. The diffusion equation then leads to an ordinary differential equation that describes the time evolution of the magnetization for any given initial condition, and it is used to derive both static and dynamic properties of the spin system.
引用
收藏
页数:6
相关论文
共 10 条
[1]  
Baxter R. J., 1982, Exactly Solved Models in Statistical Mechanics Academic
[2]   RANDOM-WALKS ON A CLOSED-LOOP AND SPIN-GLASS RELAXATION [J].
CAMPBELL, IA .
JOURNAL DE PHYSIQUE LETTRES, 1985, 46 (24) :1159-1162
[3]   TIME-DEPENDENT STATISTICS OF ISING MODEL [J].
GLAUBER, RJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (02) :294-&
[4]  
HALE J. K., 2013, Introduction to functional differential equations
[5]  
Kac M., 1968, STATISTICAL PHYSICS, V1, P241
[6]  
Mezard M., 1987, SPIN GLASS THEORY
[7]   CORRELATIONS AND SPONTANEOUS MAGNETIZATION OF 2-DIMENSIONAL ISING MODEL [J].
MONTROLL, EW ;
POTTS, RB ;
WARD, JC .
JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (02) :308-&
[8]   DYNAMICS OF 3-DIMENSIONAL ISING SPIN-GLASSES IN THERMAL-EQUILIBRIUM [J].
OGIELSKI, AT .
PHYSICAL REVIEW B, 1985, 32 (11) :7384-7398
[9]   Solvable kinetic Gaussian model in an external field [J].
Zhu, JY ;
Yang, ZR .
PHYSICAL REVIEW E, 2000, 61 (01) :210-217
[10]  
Zwillinger D., 1992, HDB DIFFERENTIAL EQU