3D printable conductive materials for the fabrication of electrochemical sensors: A mini review

被引:175
作者
Hamzah, Hairul Hisham [1 ]
Shafiee, Saiful Arifin [2 ]
Abdalla, Aya [3 ,4 ]
Patel, Bhavik Anil [3 ,4 ]
机构
[1] Univ Sains Malaysia, Sch Chem Sci, George Town 11800, Malaysia
[2] Univ Southampton, Chem, Southampton SO17 1BJ, Hants, England
[3] Univ Brighton, Sch Pharm & Biomol Sci, Brighton BN2 4GJ, E Sussex, England
[4] Univ Brighton, Ctr Stress & Age Related Dis, Brighton BN2 4GJ, E Sussex, England
关键词
3D printing; Additive manufacturing; Electrochemistry; Conductive electrode; 3D printed electrode; Electrochemical sensor; 3D-PRINTED METAL-ELECTRODES; NANOTUBE COMPOSITE ELECTRODES; ANODIC-STRIPPING VOLTAMMETRY; DEVICES; PERFORMANCE;
D O I
10.1016/j.elecom.2018.09.006
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The review presents recent developments in the use of conductive materials that can be printed using additive manufacturing (3D printing), enabling the development of mass-produced electrochemical sensors of varying geometries. This review will highlight some key electroanalytical applications of 3D-printed electrochemical sensors and discuss their potential future capabilities.
引用
收藏
页码:27 / 31
页数:5
相关论文
共 33 条
[1]   Self-Contained Polymer/Metal 3D Printed Electrochemical Platform for Tailored Water Splitting [J].
Ambrosi, Adriano ;
Pumera, Martin .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (27)
[2]   3D-printing technologies for electrochemical applications [J].
Ambrosi, Adriano ;
Pumera, Martin .
CHEMICAL SOCIETY REVIEWS, 2016, 45 (10) :2740-2755
[3]   Helical 3D-Printed Metal Electrodes as Custom-Shaped 3D Platform for Electrochemical Devices [J].
Ambrosi, Adriano ;
Moo, James Guo Sheng ;
Pumera, Martin .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (05) :698-703
[4]   3D Printing-Based Integrated Water Quality Sensing System [J].
Banna, Muinul ;
Bera, Kaustav ;
Sochol, Ryan ;
Lin, Liwei ;
Najjaran, Homayoun ;
Sadiq, Rehan ;
Hoorfar, Mina .
SENSORS, 2017, 17 (06)
[5]   Additive manufacturing methods and modelling approaches: a critical review [J].
Bikas, H. ;
Stavropoulos, P. ;
Chryssolouris, G. .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2016, 83 (1-4) :389-405
[6]   The effects of printing orientation on the electrochemical behaviour of 3D printed acrylonitrile butadiene styrene (ABS)/carbon black electrodes [J].
Bin Hamzah, Hairul Hisham ;
Keattch, Oliver ;
Covill, Derek ;
Patel, Bhavik Anil .
SCIENTIFIC REPORTS, 2018, 8
[7]   3D-Printed Fluidic Devices for Nanoparticle Preparation and Flow-Injection Amperometry Using Integrated Prussian Blue Nanoparticle-Modified Electrodes [J].
Bishop, Gregory W. ;
Satterwhite, Jennifer E. ;
Bhakta, Snehasis ;
Kadimisetty, Karteek ;
Gillette, Kelsey M. ;
Chen, Eric ;
Rusling, James F. .
ANALYTICAL CHEMISTRY, 2015, 87 (10) :5437-5443
[8]   3D-printed metal electrodes for electrochemical detection of phenols [J].
Cheng, Tay Siew ;
Nasir, Muhammad Zafir Mohamad ;
Ambrosi, Adriano ;
Pumera, Martin .
APPLIED MATERIALS TODAY, 2017, 9 :212-219
[9]   3D printed microfluidic devices with integrated versatile and reusable electrodes [J].
Erkal, Jayda L. ;
Selimovic, Asmira ;
Gross, Bethany C. ;
Lockwood, Sarah Y. ;
Walton, Eric L. ;
McNamara, Stephen ;
Martin, R. Scott ;
Spence, Dana M. .
LAB ON A CHIP, 2014, 14 (12) :2023-2032
[10]   Electrochemical performance of multi-walled carbon nanotube composite electrodes is enhanced with larger diameters and reduced specific surface area [J].
Fagan-Murphy, Aidan ;
Kataria, Shikha ;
Patel, Bhavik Anil .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2016, 20 (03) :785-792