Exploring the binding site structure of the PPARγ ligand-binding domain by computational solvent mapping

被引:70
作者
Sheu, SH
Kaya, T
Waxman, DJ
Vajda, S
机构
[1] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
[2] Boston Univ, Dept Chem, Boston, MA 02215 USA
[3] Boston Univ, Dept Biol, Boston, MA 02215 USA
关键词
D O I
10.1021/bi048032c
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Solvent mapping moves molecular probes, small organic molecules containing various functional groups, around the protein surface, finds favorable positions, clusters the conformations, and ranks the clusters based on the average free energy. Using at least six different solvents as probes, the probes cluster in major pockets of the functional site, providing detailed and reliable information on the amino acid residues that are important for ligand binding. Solvent mapping was applied to 12 structures of the peroxisome proliferator activated receptor gamma (PPARgamma) ligand-binding domain (LBD), including 2 structures without a ligand, 2 structures with a partial agonist, and 8 structures with a PPAR agonist bound. The analysis revealed 10 binding "hot spots", 4 in the ligand-binding pocket, 2 in the coactivator-binding region, 1 in the dimerization domain, 2 around the ligand entrance site, and 1 minor site without a known function. Mapping is a major source of information on the role and cooperativity of these sites. It shows that large portions of the ligand-binding site are already formed in the PPARgamma apostructure, but an important pocket near the AF-2 transactivation domain becomes accessible only in structures that are cocrystallized with strong agonists. Conformational changes were seen in several other sites, including one involved in the stabilization of the LBD and two others at the region of the coactivator binding. The number of probe clusters retained by these sites depends on the properties of the bound agonist, providing information on the origin of correlations between ligand and coactivator binding.
引用
收藏
页码:1193 / 1209
页数:17
相关论文
共 45 条
[1]   An experimental approach to mapping the binding surfaces of crystalline proteins [J].
Allen, KN ;
Bellamacina, CR ;
Ding, XC ;
Jeffery, CJ ;
Mattos, C ;
Petsko, GA ;
Ringe, D .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (07) :2605-2611
[2]   The mechanisms of action of PPARs [J].
Berger, J ;
Moller, DE .
ANNUAL REVIEW OF MEDICINE, 2002, 53 :409-435
[3]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[4]   Fast prediction and visualization of protein binding pockets with PASS [J].
Brady, GP ;
Stouten, PFW .
JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2000, 14 (04) :383-401
[5]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[6]   GRID POSITIONING INDEPENDENCE AND THE REDUCTION OF SELF-ENERGY IN THE SOLUTION OF THE POISSON-BOLTZMANN EQUATION [J].
BRUCCOLERI, RE .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1993, 14 (12) :1417-1422
[7]   Structure of the PPARα and -γ ligand binding domain in complex with AZ 242;: Ligand selectivity and agonist activation in the PPAR family [J].
Cronet, P ;
Petersen, JFW ;
Folmer, R ;
Blomberg, N ;
Sjöblom, K ;
Karlsson, U ;
Lindstedt, EL ;
Bamberg, K .
STRUCTURE, 2001, 9 (08) :699-706
[8]  
Delano WL, 2002, PYMOL USERS MANUAL
[9]   Computational mapping identifies the binding sites of organic solvents on proteins [J].
Dennis, S ;
Kortvelyesi, T ;
Vajda, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (07) :4290-4295
[10]   Synthesis and biological and structural characterization of the dual-acting peroxisome proliferator-activated receptor α/γ agonist ragaglitazar [J].
Ebdrup, S ;
Pettersson, I ;
Rasmussen, HB ;
Deussen, HJ ;
Jensen, AF ;
Mortensen, SB ;
Fleckner, J ;
Pridal, L ;
Nygaard, L ;
Sauerberg, P .
JOURNAL OF MEDICINAL CHEMISTRY, 2003, 46 (08) :1306-1317