Uniform approximation by neural networks

被引:84
作者
Makovoz, Y [1 ]
机构
[1] Univ Massachusetts, Dept Math, Lowell, MA 01854 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jath.1997.3217
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D subset of R-d be a compact set and let Phi be a uniformly bounded set of D --> R functions. For a given real-valued function f defined on D and a given natural number n, we are looking for a good uniform approximation to f of the form Sigma(i=1)(n) a(i)phi(i), with phi(i) is an element of Phi, a(i) is an element of R. Two main cases are considered: (1) when D is a finite set and (2) when the set Phi is formed by the functions phi(upsilon, b)(x) := s(upsilon . x + b), where upsilon is an element of R-d, b is an element of R, and s is a fixed R --> R function. (C) 1998 Academic Press.
引用
收藏
页码:215 / 228
页数:14
相关论文
共 13 条
[1]  
[Anonymous], ADV PROBLEMS
[2]   UNIVERSAL APPROXIMATION BOUNDS FOR SUPERPOSITIONS OF A SIGMOIDAL FUNCTION [J].
BARRON, AR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (03) :930-945
[3]  
BARRON AR, 1992, YAL WORKSH AD LEARN
[4]  
BELINSKII E, IN PRESS T AM MATH S
[5]  
DeVore RA., 1995, J FOURIER ANAL APPL, V2, P29, DOI [DOI 10.1007/S00041-001-4021-8, 10.1007/s00041-001-4021-8]
[6]  
LOEVE M, 1987, PROBABILITY THEORY
[7]   Random approximants and neural networks [J].
Makovoz, Y .
JOURNAL OF APPROXIMATION THEORY, 1996, 85 (01) :98-109
[8]   ON TRIGONOMETRIC N-WIDTHS AND THEIR GENERALIZATION [J].
MAKOVOZ, Y .
JOURNAL OF APPROXIMATION THEORY, 1984, 41 (04) :361-366
[9]  
PISIER G, SEM AN FONCT 1980 19
[10]   UNIFORM CONVERGENCE OF RELATIVE FREQUENCIES OF EVENTS TO THEIR PROBABILITIES [J].
VAPNIK, VN ;
CHERVONENKIS, AY .
THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1971, 16 (02) :264-+