Kernel-based Atlas Image Selection for Brain Tissue Segmentation

被引:0
|
作者
Cardenas-Pena, D. [1 ,2 ]
Orbes-Arteaga, M. [1 ,2 ]
Castellanos-Dominguez, G. [1 ,2 ]
机构
[1] Univ Nacl Colombia, Sede Manizales, La Nubia, Colombia
[2] Signal Proc & Recognit Grp, Manizales, Colombia
来源
2014 36TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC) | 2014年
关键词
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We propose a new Kernel-based Atlas Image Selection computed in the Embedding Representation space (termed KAISER) aiming to support labeling of brain tissue on 3D magnetic resonance (MR) images. KAISER approach provides efficient feature extraction from MR volumes based on an introduced inter-slice kernel (ISK). Thus, using the ISK matrix eigendecomposition, the inherent structure of data distribution is accentuated through estimation of low dimensional compact space where every pair-wise image similarity can be better measured. We compare our proposal against the wholepopulation atlas, randomly and demographically selected multiatlas approaches in a four-tissue image labeling task. Obtained results show that the KAISER approach outperforms other alternative techniques (98% Dice index similarity against 94%), while exhibiting better repeatability.
引用
收藏
页码:2895 / 2898
页数:4
相关论文
共 50 条
  • [41] A New Atlas Pre-selection Approach for Multi-atlas Based Brain Segmentation
    Li, Hengtong
    Ye, Chenfei
    Ma, Jingbo
    Mori, Susumu
    Ma, Heather T.
    INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS, 2019, 64 : 153 - 154
  • [42] Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy
    Aljabar, P.
    Heckemann, R. A.
    Hammers, A.
    Hajnal, J. V.
    Rueckert, D.
    NEUROIMAGE, 2009, 46 (03) : 726 - 738
  • [43] Subcortical Brain Segmentation Based on Atlas Registration and Linearized Kernel Sparse Representative Classifier
    Liu, Yue
    Wei, Ying
    Wang, Chuyuan
    IEEE ACCESS, 2019, 7 : 31547 - 31557
  • [44] Construction and validation of mean shape atlas templates for atlas-based brain image segmentation
    Wang, Q
    Seghers, D
    D'Agostino, E
    Maes, F
    Vandermeulen, D
    Suetens, P
    Hammers, A
    INFORMATION PROCESSING IN MEDICAL IMAGING, PROCEEDINGS, 2005, 3565 : 689 - 700
  • [45] Similarity clustering-based atlas selection for pelvic CT image segmentation
    Kennedy, Angel
    Dowling, Jason
    Greer, Peter B.
    Holloway, Lois
    Jameson, Michael G.
    Roach, Dale
    Ghose, Soumya
    Rivest-Henault, David
    Marcello, Marco
    Ebert, Martin A.
    MEDICAL PHYSICS, 2019, 46 (05) : 2243 - 2250
  • [46] A Kernel-based Approach for Content-based Image Retrieval
    Karmakar, Priyabrata
    Teng, Shyh Wei
    Lu, Guojun
    Zhang, Dengsheng
    2018 INTERNATIONAL CONFERENCE ON IMAGE AND VISION COMPUTING NEW ZEALAND (IVCNZ), 2018,
  • [47] Kernel-based adaptive sampling for image reconstruction and meshing
    Zhong, Zichun
    Hua, Jing
    COMPUTER AIDED GEOMETRIC DESIGN, 2016, 43 : 68 - 81
  • [48] KERNEL-BASED IMAGE FILTERING: FAST ALGORITHMS AND APPLICATIONS
    Ghosh, Sanjay
    SIGGRAPH ASIA 2019 DOCTORAL CONSORTIUM (SA '19), 2019,
  • [49] Fast Object Segmentation Learning with Kernel-based Methods for Robotics
    Ceola, Federico
    Maiettini, Elisa
    Pasquale, Giulia
    Rosasco, Lorenzo
    Natale, Lorenzo
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 13581 - 13588
  • [50] Kernel-Based Supervised Discrete Hashing for Image Retrieval
    Shi, Xiaoshuang
    Xing, Fuyong
    Cai, Jinzheng
    Zhang, Zizhao
    Xie, Yuanpu
    Yang, Lin
    COMPUTER VISION - ECCV 2016, PT VII, 2016, 9911 : 419 - 433