A framework for obtaining guaranteed error bounds for finite element approximations

被引:29
作者
Ainsworth, Mark [1 ]
机构
[1] Univ Strathclyde, Dept Math, Glasgow G1 1XH, Lanark, Scotland
关键词
A posteriori error estimation; Non-conforming finite element; Discontinuous Galerkin method; Guaranteed error bounds; ELLIPTIC PROBLEMS;
D O I
10.1016/j.cam.2010.01.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give an overview of our recent progress in developing a framework for the derivation of fully computable guaranteed posteriori error bounds for finite element approximation including conforming, non-conforming, mixed and discontinuous finite element schemes. Whilst the details of the actual estimator are rather different for each particular scheme, there is nonetheless a common underlying structure at work in all cases. We aim to illustrate this structure by treating conforming, non-conforming and discontinuous finite element schemes in a single framework. In taking a rather general viewpoint, some of the finer details of the analysis that rely on the specific properties of each particular scheme are obscured but, in return, we hope to allow the reader to 'see the wood despite the trees'. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2618 / 2632
页数:15
相关论文
共 29 条
[1]  
Ainsworth M, 2005, CONTEMP MATH, V383, P1
[2]   Robust a posteriori error estimation for nonconforming finite element approximation [J].
Ainsworth, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 42 (06) :2320-2341
[3]  
AINSWORTH M, 2008, 9 STRATHCL U
[4]  
Ainsworth M., 2000, PURE APPL MATH NEW Y
[5]  
AINSWORTH M, 2008, 14 STRATHCL U
[6]   FULLY COMPUTABLE BOUNDS FOR THE ERROR IN NONCONFORMING FINITE ELEMENT APPROXIMATIONS OF ARBITRARY ORDER ON TRIANGULAR ELEMENTS [J].
Ainsworth, Mark ;
Rankin, Richard .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (06) :3207-3232
[7]   Robust a posteriori error estimation for the nonconforming Fortin-Soulie finite element approximation [J].
Ainsworth, Mark ;
Rankin, Richard .
MATHEMATICS OF COMPUTATION, 2008, 77 (264) :1917-1939
[8]   A posteriori error estimation for lowest order Raviart-Thomas mixed finite elements [J].
Ainsworth, Mark .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 30 (01) :189-204
[9]   A posteriori error estimation for discontinuous Galerkin finite element approximation [J].
Ainsworth, Mark .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (04) :1777-1798
[10]  
Ainsworth M, 2005, INT J NUMER ANAL MOD, V2, P1