Enhancement of network coding in wireless sensor network using improved lion algorithm: intention toward maximizing network throughput and lifetime

被引:1
作者
Dike, Prashant R. [1 ]
Vishwanath, T. S. [1 ]
Rohakale, Vandana [2 ]
机构
[1] Bheemanna Khandre Inst Technol, Bidar, India
[2] Sinhgad Inst Technol & Sci Lonavala, Pune, Maharashtra, India
关键词
Wireless sensor network; Network coding; Multi-objective function; Energy consumption; Throughput; Improved mutation-based lion algorithm; Network constraints; RELIABLE DATA-TRANSMISSION;
D O I
10.1108/IJIUS-02-2021-0007
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Purpose Since communication usually accounts as the foremost problem for power consumption, there are some approaches, such as topology control and network coding (NC), for diminishing the activity of sensors' transceivers. If such approaches are employed simultaneously, then the overall performance does raise as expected. In a wireless sensor network (WSN), the linear NC has been shown to enhance the performance of network throughput and reduce delay. However, the NC condition of existing NC-aware routings may experience the issue of false-coding effect in some scenarios and usually neglect node energy, which highly affects the energy efficiency performance. The purpose of this paper is to propose a new NC scheduling in a WSN with the intention of maximizing the throughput and minimizing the energy consumption of the network. Design/methodology/approach The improved meta-heuristic algorithm called the improved mutation-based lion algorithm (IM-LA) is used to solve the problem of NC scheduling in a WSN. The main intention of implementing improved optimization is to maximize the throughput and minimize the energy consumption of the network during the transmission from the source to the destination node. The parameters like topology and time slots are taken for optimizing in order to obtain the concerned objective function. While solving the current optimization problem, it has considered a few constraints like timeshare constraint, data-flow constraint and domain constraint. Thus, the network performance is proved to be enhanced by the proposed model when compared to the conventional model. Findings When 20 nodes are fixed for the convergence analysis, performed in terms of multi-objective function, it is noted that during the 400th iteration, the proposed IM-LA was 10.34, 13.91 and 50% better than gray wolf algorithm (GWO), firefly algorithm (FF) and particle swarm optimization (PSO), respectively, and same as LA. Therefore, it is concluded that the proposed IM-LA performs extremely better than other conventional methods in minimizing the cost function, and hence, the optimal scheduling of nodes in a WSN in terms of the multi-objective function, i.e. minimizing energy consumption and maximizing throughput using NC has been successfully done. Originality/value This paper adopts the latest optimization algorithm called IM-LA, which is used to solve the problem of network coding scheduling in a WSN. This is the first work that utilizes IM-LA for optimal network coding in a WSN.
引用
收藏
页码:444 / 467
页数:24
相关论文
共 33 条
[1]   Network information flow [J].
Ahlswede, R ;
Cai, N ;
Li, SYR ;
Yeung, RW .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (04) :1204-1216
[2]   A survey on sensor networks [J].
Akyildiz, IF ;
Su, WL ;
Sankarasubramaniam, Y ;
Cayirci, E .
IEEE COMMUNICATIONS MAGAZINE, 2002, 40 (08) :102-114
[3]   Optimization using lion algorithm: a biological inspiration from lion’s social behavior [J].
Boothalingam R. .
Evolutionary Intelligence, 2018, 11 (1-2) :31-52
[4]   Survey on the Characterization and Classification of Wireless Sensor Network Applications [J].
Borges, Luis M. ;
Velez, Fernando J. ;
Lebres, Antonio S. .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2014, 16 (04) :1860-1890
[5]   Compressive network coding for wireless sensor networks: Spatio-temporal coding and optimization design [J].
Chen, Siguang ;
Zhao, Chuanxin ;
Wu, Meng ;
Sun, Zhixin ;
Zhang, Haijun ;
Leung, Victor C. M. .
COMPUTER NETWORKS, 2016, 108 :345-356
[6]   Network coding-based post-quantum cryptography [J].
Cohen A. ;
D’Oliveira R.G.L. ;
Salamatian S. ;
Médard M. .
IEEE Journal on Selected Areas in Information Theory, 2021, 2 (01) :49-64
[7]   Cluster-level based link redundancy with network coding in duty cycled relay wireless sensor networks [J].
Ding, Xu ;
Sun, Xinjiang ;
Huang, Cheng ;
Wu, Xiaobei .
COMPUTER NETWORKS, 2016, 99 :15-36
[8]   Improving the Performance of Wireless Sensor Networks Through Optimized Complex Field Network Coding [J].
Eritmen, Kayhan ;
Keskinoz, Mehmet .
IEEE SENSORS JOURNAL, 2015, 15 (05) :2934-2946
[9]   On Non-Binary Constellations for Channel-Coded Physical-Layer Network Coding [J].
Faraji-Dana, Zahra ;
Mitran, Patrick .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2013, 12 (01) :312-319
[10]   The Tactile Internet [J].
Fettweis, Gerhard P. .
IEEE VEHICULAR TECHNOLOGY MAGAZINE, 2014, 9 (01) :64-70