A Deep Learning Method for AGILE-GRID Gamma-Ray Burst Detection

被引:7
|
作者
Parmiggiani, N. [1 ,2 ]
Bulgarelli, A. [1 ]
Fioretti, V. [1 ]
Di Piano, A. [1 ]
Giuliani, A. [3 ]
Longo, F. [4 ,5 ,6 ]
Verrecchia, F. [7 ,8 ]
Tavani, M. [9 ,10 ,11 ,12 ]
Beneventano, D. [2 ]
Macaluso, A. [13 ]
机构
[1] INAF OAS Bologna, Via P Gobetti 93-3, I-40129 Bologna, Italy
[2] Univ Modena & Reggio Emilia, DIEF Via Pietro Vivarelli 10, I-41125 Modena, Italy
[3] INAF IASF Milano, Via Alfonso Corti 12, I-20133 Milan, Italy
[4] Univ Trieste, Dipartimento Fis, Via Valerio 2, I-34127 Trieste, Italy
[5] INFN, Sez Trieste, Via Valerio 2, I-34127 Trieste, Italy
[6] Inst Fundamental Phys Univers, Via Beirut 2, Trieste, Italy
[7] ASI Space Sci Data Ctr SSDC, Via Politecn Snc, I-00133 Rome, Italy
[8] INAF Osservatorio Astron Roma, Via Frascati 33, I-00078 Monte Porzio Catone, Italy
[9] INAF IAPS Roma, Via Fosso Cavaliere 100, I-00133 Rome, Italy
[10] Univ Tor Vergata, Dipartimento Fis, Via Ric Sci 1, I-00133 Rome, Italy
[11] INFN Roma Tor Vergata, Via Ric Sci 1, I-00133 Rome, Italy
[12] Consorzio Interuniv Fis Spaziale CIFS, Villa Gualino Vle Settimio Severo 63, I-10133 Turin, Italy
[13] Univ Bologna, Dept Comp Sci & Engn DISI, Viale Risorgimento 2, I-40136 Bologna, Italy
关键词
SILICON TRACKER; EMISSION; DESIGN; HARD;
D O I
10.3847/1538-4357/abfa15
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The follow-up of external science alerts received from gamma-ray burst (GRB) and gravitational wave detectors is one of the AGILE Team's current major activities. The AGILE team developed an automated real-time analysis pipeline to analyze AGILE Gamma-Ray Imaging Detector (GRID) data to detect possible counterparts in the energy range 0.1-10 GeV. This work presents a new approach for detecting GRBs using a convolutional neural network (CNN) to classify the AGILE-GRID intensity maps by improving the GRB detection capability over the Li & Ma method, currently used by the AGILE team. The CNN is trained with large simulated data sets of intensity maps. The AGILE complex observing pattern due to the so-called "spinning mode" is studied to prepare data sets to test and evaluate the CNN. A GRB emission model is defined from the second Fermi-LAT GRB catalog and convoluted with the AGILE observing pattern. Different p-value distributions are calculated, evaluating, using the CNN, millions of background-only maps simulated by varying the background level. The CNN is then used on real data to analyze the AGILE-GRID data archive, searching for GRB detections using the trigger time and position taken from the Swift-BAT, Fermi-GBM, and Fermi-LAT GRB catalogs. From these catalogs, the CNN detects 21 GRBs with a significance of >= 3 sigma, while the Li & Ma method detects only two GRBs. The results shown in this work demonstrate that the CNN is more effective in detecting GRBs than the Li & Ma method in this context and can be implemented into the AGILE-GRID real-time analysis pipeline.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Probing Thermal Electrons in Gamma-Ray Burst Afterglows
    Gao, Hao-Xuan
    Geng, Jin-Jun
    Sun, Tian-Rui
    Li, Liang
    Huang, Yong-Feng
    Wu, Xue-Feng
    ASTROPHYSICAL JOURNAL, 2024, 971 (01)
  • [32] Multi-messenger detection prospects of gamma-ray burst afterglows with optical jumps
    Guarini, Ersilia
    Tamborra, Irene
    Begue, Damien
    Pitik, Tetyana
    Greiner, Jochen
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2022, (06):
  • [33] The unusual afterglow of the gamma-ray burst 100621A
    Greiner, J.
    Kruhler, T.
    Nardini, M.
    Filgas, R.
    Moin, A.
    de Breuck, C.
    Montenegro-Montes, F.
    Lundgren, A.
    Klose, S.
    Fonso, P. M. J.
    Bertoldi, F.
    Elliott, J.
    Kann, D. A.
    Knust, F.
    Menten, K.
    Guelbenzu, A. Nicuesa
    Olivares, F. E.
    Raul, A.
    Rossi, A.
    Schady, P.
    Schmidl, S.
    Siringo, G.
    Spezzi, L.
    Sudilovsky, V.
    Tingay, S. J.
    Updike, A. C.
    Wang, Z.
    Weiss, A.
    Wieringa, M.
    Wyrowski, F.
    ASTRONOMY & ASTROPHYSICS, 2013, 560
  • [35] Numerical simulations of polarization in gamma-ray burst afterglows
    Medina Covarrubias, Rogelio
    De Colle, Fabio
    Urrutia, Gerardo
    Vargas, Felipe
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 523 (03) : 4583 - 4592
  • [36] GRB 090426: the farthest short gamma-ray burst?
    Antonelli, L. A.
    D'Avanzo, P.
    Perna, R.
    Amati, L.
    Covino, S.
    Cutini, S.
    D'Elia, V.
    Gallozzi, S.
    Grazian, A.
    Palazzi, E.
    Piranomonte, S.
    Rossi, A.
    Spiro, S.
    Stella, L.
    Testa, V.
    Chincarini, G.
    Di Paola, A.
    Fiore, F.
    Fugazza, D.
    Giallongo, E.
    Maiorano, E.
    Masetti, N.
    Pedichini, F.
    Salvaterra, R.
    Tagliaferri, G.
    Vergani, S.
    ASTRONOMY & ASTROPHYSICS, 2009, 507 (03) : L45 - U14
  • [37] Plug disintegration in gamma-ray burst jet eruption
    Yalinewich, Almog
    Beniamini, Paz
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 513 (01) : 1488 - 1498
  • [38] Joint gravitational wave - gamma-ray burst detection rates in the aftermath of GW170817
    Howell, E. J.
    Ackley, K.
    Rowlinson, A.
    Coward, D.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 485 (01) : 1435 - 1447
  • [39] Host galaxy of the dark gamma-ray burst GRB 051008
    Vol'nova, A. A.
    Pozanenko, A. S.
    Rumyantsev, V. V.
    Biryukov, V. V.
    Ibragimov, M. A.
    Sharapov, D. A.
    Kann, D. A.
    Gorosabel, J.
    Castro-Tirado, A. J.
    Postigo, A. de Ugarte
    ASTROPHYSICAL BULLETIN, 2010, 65 (04) : 334 - 346
  • [40] The plateau of gamma-ray burst: hint for the solidification of quark matter?
    Dai Shi
    Li LiXin
    Xu RenXin
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2011, 54 (08) : 1541 - 1545