Evaluation of the degree of cross-linking of cellulose-based superabsorbent hydrogels: A comparison between different techniques

被引:26
|
作者
Lionetto, F
Sannino, A
Mensitieri, G
Maffezzoli, A
机构
[1] Univ Lecce, Dept Innovat Engn, I-73100 Lecce, Italy
[2] Univ Naples Federico II, Dept Mat & Prod Engn, I-80125 Naples, Italy
关键词
degree of cross-linking; dynamic mechanical analysis; hydrogels; NMR; swelling;
D O I
10.1002/masy.200351020
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Three different techniques have been applied to the evaluation of the degree of cross-linking of superabsorbent cellulose-based hydrogels obtained from water solutions of carboxymethylcellulose sodium salt (CMCNa) and hydroxyethylcellulose (HEC), chemically cross-linked with divinyl sulfone. These polyelectrolyte hydrogels are biodegradable and have the same sorption capacity as acrylate-based superabsorbents on the market. A C-13 solid state NMR analysis was carried out on dry samples of hydrogel to obtain the degree of cross-linking, an important parameter that affects the swelling and mechanical properties of a hydrogel. Dynamic mechanical analysis was performed during the hydrogel cross-linking using a parallel plate rheometer under oscillatory deformations in order to monitor the evolution of the hydrogel viscoelastic properties during the synthesis. The value of \G*\ and the slope of the stress-deformation ratio plots from uniaxial compression tests were used to evaluate the elastically effective degree of cross-linking according to classical rubber elasticity theory. Moreover, a dynamic mechanical analysis was carried out on cross-linked hydrogels at different degrees of swelling in order to investigate the influence of the swelling on the mechanical properties and the application of rubber elasticity theory to swollen hydrogels.
引用
收藏
页码:199 / 207
页数:9
相关论文
共 50 条
  • [1] Superabsorbent cellulose-based hydrogels cross-liked with borax
    Supachok Tanpichai
    Farin Phoothong
    Anyaporn Boonmahitthisud
    Scientific Reports, 12
  • [2] Superabsorbent cellulose-based hydrogels cross-liked with borax
    Tanpichai, Supachok
    Phoothong, Farin
    Boonmahitthisud, Anyaporn
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [3] Advances in cellulose-based superabsorbent hydrogels
    Ma, Jianzhong
    Li, Xiaolu
    Bao, Yan
    RSC ADVANCES, 2015, 5 (73): : 59745 - 59757
  • [4] CELLULOSE-BASED GELS PREPARED THROUGH CROSS-LINKING REACTIONS
    Kulomaa, Tuomas
    Kyllonen, Lasse
    King, Alistair
    Labafzadeh, Sara
    Karhunen, Pirkko
    Kilpelainen, Ilkka
    16TH INTERNATIONAL SYMPOSIUM ON WOOD, FIBER AND PULPING CHEMISTRY, PROCEEDINGS, VOLS I & II, 2011, : 1380 - 1383
  • [5] Environmentally sustainable production of cellulose-based superabsorbent hydrogels
    Marcì, G
    Mele, G
    Palmisano, L
    Pulito, P
    Sannino, A
    GREEN CHEMISTRY, 2006, 8 (05) : 439 - 444
  • [6] Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity
    Peng, Na
    Wang, Yanfeng
    Ye, Qifa
    Liang, Lei
    An, Yuxing
    Li, Qiwei
    Chang, Chunyu
    CARBOHYDRATE POLYMERS, 2016, 137 : 59 - 64
  • [7] Biomimetic cellulose-based superabsorbent hydrogels for treating obesity
    Marta Madaghiele
    Christian Demitri
    Ivo Surano
    Alessandra Silvestri
    Milena Vitale
    Eliana Panteca
    Yishai Zohar
    Maria Rescigno
    Alessandro Sannino
    Scientific Reports, 11
  • [8] Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid
    Demitri, Christian
    Del Sole, Roberta
    Scalera, Francesca
    Sannino, Alessandro
    Vasapollo, Giuseppe
    Maffezzoli, Alfonso
    Ambrosio, Luigi
    Nicolais, Luigi
    JOURNAL OF APPLIED POLYMER SCIENCE, 2008, 110 (04) : 2453 - 2460
  • [9] Potential of Cellulose-Based Superabsorbent Hydrogels as Water Reservoir in Agriculture
    Demitri, C.
    Scalera, F.
    Madaghiele, M.
    Sannino, A.
    Maffezzoli, A.
    INTERNATIONAL JOURNAL OF POLYMER SCIENCE, 2013, 2013
  • [10] Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid
    Demitri, Christian
    Del Sole, Roberta
    Scalera, Francesca
    Sannino, Alessandro
    Vasapollo, Giuseppe
    Maffezzoli, Alfonso
    Ambrosio, Luigi
    Nicolais, Luigi
    Journal of Applied Polymer Science, 2008, 110 (04): : 2453 - 2460