Metabolic Engineering of Lysine Producing Corynebacterium glutamicum Strains

被引:3
作者
Andriiash, G. S. [1 ]
Sekan, O. S. [1 ,2 ]
Tigunova, O. O. [1 ]
Blume, Ya. B. [1 ]
Shulga, S. M. [1 ]
机构
[1] Natl Acad Sci Ukraine, Inst Food Biotechnol & Genom, UA-04123 Kiev, Ukraine
[2] Lulea Univ Technol, Div Wood Sci & Engn, Dept Engn Sci & Math, S-93187 Skelleftea, Sweden
关键词
Keywords; Corynebacterium glutamicum; producer strain; microbiological synthesis; lysine; metabolic engineering; ACID-PRODUCING BACTERIUM; AMINO-ACIDS; PHOSPHOTRANSFERASE SYSTEM; EXPRESSION SYSTEM; GENE-EXPRESSION; RNA-POLYMERASE; GLUTAMATE; FLUX; PATHWAYS; GLUCOSE;
D O I
10.3103/S0095452720020024
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The review is devoted to the analysis of the current achievements of Corynebacterium glutamicum metabolic engineering for the production of lysine. Key genes of lysine biosynthesis in C. glutamicum and ways of creating new genetically modified strains are considered. The role of different plasmids, vector cassettes, and promoter types for the regulation of gene expression in C. glutamicum is described. Information is provided on the use of carbon-containing substrates (hexose, pentose, lactic acid, mannitol) for the production of lysine. Possibilities of using CRISPR technology in genetic engineering of C. glutamicum are considered. Genetic changes in C. glutamicum allowed the use of alternative substrates and contributed to the increase of lysine accumulation in the culture fluid. The data that may be used for the creation of new lysine overproduction strains are summarized.
引用
收藏
页码:137 / 146
页数:10
相关论文
共 95 条
[1]  
Andriiash G.S., 2015, THREONINE FOOD SOURC
[2]  
Andriiash G.S., 2012, MICROBIOL BIOTECHNOL, P6, DOI [10.18524/2307-4663.2012.4(20).90435, DOI 10.18524/2307-4663.2012.4(20).90435]
[3]  
Andriiash G.S., 2014, BIOTECHNOL ACTA, V7, P40, DOI [10.15407/biotech7.06.040, DOI 10.15407/BIOTECH7.06.040]
[4]   Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery [J].
Baritugo, Kei-Anne ;
Kim, Hee Taek ;
David, Yokimiko ;
Choi, Jong-il ;
Hong, Soon Ho ;
Jeong, Ki Jun ;
Choi, Jong Hyun ;
Joo, Jeong Chan ;
Park, Si Jae .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2018, 102 (09) :3915-3937
[5]  
Becker J., 2016, Industrial Biotechnology, P183
[6]   Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum -: over expression and modification of G6P dehydrogenase [J].
Becker, Judith ;
Klopprogge, Corinna ;
Herold, Andrea ;
Zelder, Oskar ;
Bolten, Christoph J. ;
Wittmann, Christoph .
JOURNAL OF BIOTECHNOLOGY, 2007, 132 (02) :99-109
[7]   Advanced Biotechnology: Metabolically Engineered Cells for the Bio-Based Production of Chemicals and Fuels, Materials, and Health-Care Products [J].
Becker, Judith ;
Wittmann, Christoph .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (11) :3328-3350
[8]   From zero to hero-Design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production [J].
Becker, Judith ;
Zelder, Oskar ;
Haefner, Stefan ;
Schroeder, Hartwig ;
Wittmann, Christoph .
METABOLIC ENGINEERING, 2011, 13 (02) :159-168
[9]   Recombineering in Corynebacterium glutamicum combined with optical nanosensors: a general strategy for fast producer strain generation [J].
Binder, Stephan ;
Siedler, Solvej ;
Marienhagen, Jan ;
Bott, Michael ;
Eggeling, Lothar .
NUCLEIC ACIDS RESEARCH, 2013, 41 (12) :6360-6369
[10]   Acetohydroxyacid Synthase, a Novel Target for Improvement of L-Lysine Production by Corynebacterium glutamicum [J].
Blombach, Bastian ;
Hans, Stephan ;
Bathe, Brigitte ;
Eikmanns, Bernhard J. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2009, 75 (02) :419-427