Existence results for vector variational inequality problems on Hadamard manifolds

被引:14
作者
Chen, Sheng-lan [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Sci, Key Lab Intelligent Anal & Decis Complex Syst, Chongqing 400065, Peoples R China
关键词
Vector variational inequality; C-pseudomonotone; v-hemicontinuous; v-coercive; Geodesic convex; Hadamard manifold; PROXIMAL POINT ALGORITHM; EQUILIBRIUM PROBLEMS; CONVEX FEASIBILITY; NONSMOOTH ANALYSIS; FIELDS;
D O I
10.1007/s11590-020-01562-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we introduce and study vector variational inequality problems (VVIP) on Hadamard manifolds. The concepts of C-pseudomonotone, v-hemicontinuous and v-coercive operators are given. Some existence results for VVIP are obtained with the assumptions of C-pseudomonotonicity and v-hemicontinuity. These new results extend some corresponding known results given in literatures.
引用
收藏
页码:2395 / 2411
页数:17
相关论文
共 34 条
[1]   Nonsmooth analysis and Hamilton-Jacobi equations on Riemannian manifolds [J].
Azagra, D ;
Ferrera, J ;
López-Mesas, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 220 (02) :304-361
[2]  
Barani A., 2013, Differ. Geom.- Dyn. Syst., V15, P26
[3]   Local convergence of the proximal point method for a special class of nonconvex functions on Hadamard manifolds [J].
Bento, G. C. ;
Ferreira, O. P. ;
Oliveira, P. R. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (02) :564-572
[4]   Subgradient Method for Convex Feasibility on Riemannian Manifolds [J].
Bento, Glaydston C. ;
Melo, Jefferson G. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 152 (03) :773-785
[5]  
Chavel I., 1993, Riemannian Geometry-A Modern Introduction
[6]   EXISTENCE OF SOLUTIONS FOR A VECTOR VARIATIONAL INEQUALITY - AN EXTENSION OF THE HARTMANN-STAMPACCHIA THEOREM [J].
CHEN, GY .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1992, 74 (03) :445-456
[7]   EXISTENCE AND CONTINUITY OF SOLUTIONS FOR VECTOR OPTIMIZATION [J].
CHEN, GY ;
CRAVEN, BD .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1994, 81 (03) :459-468
[8]   Vector variational inequalities and vector optimization problems on Hadamard manifolds [J].
Chen, Sheng-lan ;
Huang, Nan-jing .
OPTIMIZATION LETTERS, 2016, 10 (04) :753-767
[9]   Equilibrium problems in Hadamard manifolds [J].
Colao, Vittorio ;
Lopez, Genaro ;
Marino, Giuseppe ;
Martin-Marquez, Victoria .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 388 (01) :61-77
[10]  
Da Cruz Neto JX., 2000, Balk. J. Geom. Appl, V5, P69