The coupled nonlinear Schrodinger-type equations

被引:44
作者
Abdelrahman, Mahmoud A. E. [1 ,2 ]
Hassan, S. Z. [3 ,5 ]
Inc, Mustafa [4 ]
机构
[1] Taibah Univ, Coll Sci, Dept Math, Al Madinah Al Munawarah, Saudi Arabia
[2] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
[3] Imam Abdulrahman Bin Faisal Univ, Coll Sci & Humanities, Dept Math, Dammam, Saudi Arabia
[4] Firat Univ, Fac Sci, Dept Math, TR-23119 Elazig, Turkey
[5] POB 12020, City Jubail, Saudi Arabia
来源
MODERN PHYSICS LETTERS B | 2020年 / 34卷 / 06期
关键词
Coupled nonlinear Schrodinger-type equations; solitons; exp(-phi(xi))-expansion technique; sine-cosine technique; Riccati-Bernoulli sub-ODE technique; exact solution; TRAVELING-WAVE SOLUTIONS; ELLIPTIC FUNCTION-METHOD; F-EXPANSION METHOD; SINE-COSINE METHOD; TANH METHOD; EVOLUTION-EQUATIONS; SOLITARY WAVE; (G'/G)-EXPANSION METHOD; SOLITONS; DARK;
D O I
10.1142/S0217984920500785
中图分类号
O59 [应用物理学];
学科分类号
摘要
Nonlinear Schrodinger equations can model nonlinear waves in plasma physics, optics, fluid and atmospheric theory of profound water waves and so on. In this work, the exp(-phi(xi))-expansion, the sine-cosine and Riccati-Bernoulli sub-ODE techniques have been utilized to establish solitons, periodic waves and several types of solutions for the coupled nonlinear Schrodinger equations. These methods with the help of symbolic computations via Mathematica 10 are robust and adequate to solve partial differential nonlinear equations in mathematical physics. Finally, 3D figures for some selected solutions have been depicted.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] STABILITY OF NORMALIZED SOLITARY WAVES FOR THREE COUPLED NONLINEAR SCHRoDINGER EQUATIONS
    Bhattarai, Santosh
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (04) : 1789 - 1811
  • [42] ORBITAL STABILITY OF PERIODIC TRAVELLING WAVES FOR COUPLED NONLINEAR SCHRODINGER EQUATIONS
    Pastor, Ademir
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2010,
  • [43] A novel energy-preserving scheme for the coupled nonlinear Schrodinger equations
    Mu, Zhenguo
    Li, Haochen
    Wang, Yushun
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (01) : 61 - 81
  • [44] Numerical solution of the general coupled nonlinear Schrodinger equations on unbounded domains
    Li, Hongwei
    Guo, Yue
    PHYSICAL REVIEW E, 2017, 96 (06)
  • [45] Chaotic behaviors, exotic solitons and exact solutions of a nonlinear Schrodinger-type equation
    Li, Yaxi
    Sun, Wenfeng
    Kai, Yue
    OPTIK, 2023, 285
  • [46] Modulation of localized solutions in a system of two coupled nonlinear Schrodinger equations
    Cardoso, W. B.
    Avelar, A. T.
    Bazeia, D.
    PHYSICAL REVIEW E, 2012, 86 (02):
  • [47] Coalescence of wavenumbers and exact solutions for a system of coupled nonlinear Schrodinger equations
    Chow, KW
    Lai, DWC
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (11) : 3721 - 3728
  • [48] Solitary Waves for Linearly Coupled Nonlinear Schrodinger Equations with Inhomogeneous Coefficients
    Belmonte-Beitia, Juan
    Perez-Garcia, Victor M.
    Torres, Pedro J.
    JOURNAL OF NONLINEAR SCIENCE, 2009, 19 (04) : 437 - 451
  • [49] Solitary waves in coupled nonlinear Schrodinger equations with spatially inhomogeneous nonlinearities
    Belmonte-Beitia, Juan
    Perez-Garcia, Victor M.
    Brazhnyi, Valeriy
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (01) : 158 - 172
  • [50] Perfectly matched layers for coupled nonlinear Schrodinger equations with mixed derivatives
    Dohnal, Tomas
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (23) : 8752 - 8765