The coupled nonlinear Schrodinger-type equations

被引:44
作者
Abdelrahman, Mahmoud A. E. [1 ,2 ]
Hassan, S. Z. [3 ,5 ]
Inc, Mustafa [4 ]
机构
[1] Taibah Univ, Coll Sci, Dept Math, Al Madinah Al Munawarah, Saudi Arabia
[2] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
[3] Imam Abdulrahman Bin Faisal Univ, Coll Sci & Humanities, Dept Math, Dammam, Saudi Arabia
[4] Firat Univ, Fac Sci, Dept Math, TR-23119 Elazig, Turkey
[5] POB 12020, City Jubail, Saudi Arabia
来源
MODERN PHYSICS LETTERS B | 2020年 / 34卷 / 06期
关键词
Coupled nonlinear Schrodinger-type equations; solitons; exp(-phi(xi))-expansion technique; sine-cosine technique; Riccati-Bernoulli sub-ODE technique; exact solution; TRAVELING-WAVE SOLUTIONS; ELLIPTIC FUNCTION-METHOD; F-EXPANSION METHOD; SINE-COSINE METHOD; TANH METHOD; EVOLUTION-EQUATIONS; SOLITARY WAVE; (G'/G)-EXPANSION METHOD; SOLITONS; DARK;
D O I
10.1142/S0217984920500785
中图分类号
O59 [应用物理学];
学科分类号
摘要
Nonlinear Schrodinger equations can model nonlinear waves in plasma physics, optics, fluid and atmospheric theory of profound water waves and so on. In this work, the exp(-phi(xi))-expansion, the sine-cosine and Riccati-Bernoulli sub-ODE techniques have been utilized to establish solitons, periodic waves and several types of solutions for the coupled nonlinear Schrodinger equations. These methods with the help of symbolic computations via Mathematica 10 are robust and adequate to solve partial differential nonlinear equations in mathematical physics. Finally, 3D figures for some selected solutions have been depicted.
引用
收藏
页数:17
相关论文
共 51 条
[1]   On the new wave solutions to the MCH equation [J].
Abdelrahman, M. A. E. ;
Sohaly, M. A. .
INDIAN JOURNAL OF PHYSICS, 2019, 93 (07) :903-911
[2]   The development of the deterministic nonlinear PDEs in particle physics to stochastic case [J].
Abdelrahman, Mahmoud A. E. ;
Sohaly, M. A. .
RESULTS IN PHYSICS, 2018, 9 :344-350
[3]   Numerical Investigation of the Wave-Front Tracking Algorithm for the Full Ultra-Relativistic Euler Equations [J].
Abdelrahman, Mahmoud A. E. .
INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2018, 19 (02) :223-229
[4]   On the Shallow Water Equations [J].
Abdelrahman, Mahmoud A. E. .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2017, 72 (09) :873-879
[5]   Solitary waves for the nonlinear Schrodinger problem with the probability distribution function in the stochastic input case [J].
Abdelrahman, Mahmoud A. E. ;
Sohaly, M. A. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (08)
[6]   Global solutions for the ultra-relativistic Euler equations [J].
Abdelrahman, Mahmoud A. E. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 155 :140-162
[7]   The ultra-relativistic Euler equations [J].
Abdelrahman, Mahmoud A. E. ;
Kunik, Matthias .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (07) :1247-1264
[8]   A new front tracking scheme for the ultra-relativistic Euler equations [J].
Abdelrahman, Mahmoud A. E. ;
Kunik, Matthias .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 275 :213-235
[9]   The interaction of waves for the ultra-relativistic Euler equations [J].
Abdelrahman, Mahmoud A. E. ;
Kunik, Matthias .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 409 (02) :1140-1158
[10]   Numerical analysis of auto-catalytic glycolysis model [J].
Ahmed, Nauman ;
Tahira, S. S. ;
Imran, M. ;
Rafiq, M. ;
Rehman, M. A. ;
Younis, M. .
AIP ADVANCES, 2019, 9 (08)