Finite-size scaling of the correlation length in anisotropic systems

被引:6
|
作者
Chen, X. S. [1 ]
Zhang, H. Y. [1 ]
机构
[1] Chinese Acad Sci, Inst Theoret Phys, Beijing 100080, Peoples R China
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2007年 / 21卷 / 23-24期
关键词
critical phenomena; finite-size scaling; anisotropic systems;
D O I
10.1142/S0217979207045426
中图分类号
O59 [应用物理学];
学科分类号
摘要
The finite-size scaling functions of thermodynamic functions in anisotropic systems have been shown to be dependent on the spatial anisotropy [X.S. Chen and V. Dohm, Phys. Rev. E 70, 056136 (2004)]. Here we extend this study to the correlation length I I of the anisotropic O(n) symmetric phi(4) model in an Ld-1 x infinity cylindric geometry with periodic boundary conditions. We calculate the exact finite-size scaling function of correlation length xi(parallel to) for T >= T-c in 2 < d < 4 dimensions and in the limit n -> infinity. The finite-size scaling function of xi(parallel to) is dependent on a normalized symmetric (d - 1) x (d - 1) matrix defined by the anisotropy matrix of anisotropic systems.
引用
收藏
页码:4212 / 4218
页数:7
相关论文
共 50 条
  • [31] SYSTEMS WITH LOGARITHMIC SPECIFIC-HEAT - FINITE-SIZE SCALING
    PRIVMAN, V
    RUDNICK, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (18): : L1215 - L1219
  • [32] Correlation function for generalized Polya urns: Finite-size scaling analysis
    Mori, Shintaro
    Hisakado, Masato
    PHYSICAL REVIEW E, 2015, 92 (05):
  • [33] Shape dependence of the finite-size scaling limit in a strongly anisotropic O(∞) model
    Caracciolo, S
    Gambassi, A
    Gubinelli, M
    Pelissetto, A
    EUROPEAN PHYSICAL JOURNAL B, 2003, 34 (02): : 205 - 217
  • [34] Diffusion in bulk liquids: finite-size effects in anisotropic systems
    Botan, Alexandru
    Marry, Virginie
    Rotenberg, Benjamin
    MOLECULAR PHYSICS, 2015, 113 (17-18) : 2674 - 2679
  • [35] Finite-size scaling of the correlation length above the upper critical dimension in the five-dimensional Ising model
    Jones, JL
    Young, AP
    PHYSICAL REVIEW B, 2005, 71 (17)
  • [36] Finite-size scaling in extreme statistics
    Gyoergyi, G.
    Moloney, N. R.
    Ozogany, K.
    Racz, Z.
    PHYSICAL REVIEW LETTERS, 2008, 100 (21)
  • [37] FINITE-SIZE SCALING IN A MICROCANONICAL ENSEMBLE
    DESAI, RC
    HEERMANN, DW
    BINDER, K
    JOURNAL OF STATISTICAL PHYSICS, 1988, 53 (3-4) : 795 - 823
  • [38] FINITE-SIZE SCALING AND PHENOMENOLOGICAL RENORMALIZATION
    NIGHTINGALE, P
    JOURNAL OF APPLIED PHYSICS, 1982, 53 (11) : 7927 - 7932
  • [39] Finite-size scaling at quantum transitions
    Campostrini, Massimo
    Pelissetto, Andrea
    Vicari, Ettore
    PHYSICAL REVIEW B, 2014, 89 (09)
  • [40] Corrected finite-size scaling in percolation
    Li, Jiantong
    Ostling, Mikael
    PHYSICAL REVIEW E, 2012, 86 (04)