Parameters identification of reduced governor system model for diesel-engine generator by using hybrid particle swarm optimisation

被引:10
|
作者
Lin, Chien-Hung [1 ]
Wu, Chi-Jui [1 ]
Yang, Jun-Zhe [2 ]
Liao, Ching-Jung [3 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Elect Engn, Taipei, Taiwan
[2] I Shou Univ, Dept Elect Engn, Kaohsiung, Taiwan
[3] Taiwan Power Co, Power Res Inst, Taipei, Taiwan
基金
美国国家航空航天局;
关键词
power generation control; diesel-electric generators; distributed power generation; diesel engines; particle swarm optimisation; power system stability; reduced order systems; power system identification; parameters identification; reduced-order governor system model; diesel-engine generators; hybrid particle swarm optimisation; island power system; reduced-order model; ROM; hybrid PSO; governor control systems; stability analysis; PSS; E;
D O I
10.1049/iet-epa.2017.0851
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study presents an approach to build a reduced-order model (ROM) for the governor control systems of diesel-engine generators in an island power system. The hybrid particle swarm optimisation (PSO) is used in the parameter identification of the ROM. The reduced-order governor system model could be a useful and feasible model in the stability analysis of the island power system by using power system simulator for engineering. The results of the ROM and a sixth-order model have been compared. It is found that the ROM with the parameter values identified using the hybrid PSO is robust. Moreover, real-case validation of the ROM shows that it is usable to analyse stability and contingency in the power system.
引用
收藏
页码:1265 / 1271
页数:7
相关论文
共 50 条
  • [31] Identification of Hammerstein systems using key-term separation principle, auxiliary model and improved particle swarm optimisation algorithm
    Xu, Xiaoping
    Wang, Feng
    Liu, Guangjun
    Qian, Fucai
    IET SIGNAL PROCESSING, 2013, 7 (08) : 766 - 773
  • [32] System identification of cropped delta UAVs from flight test methods using particle Swarm-Optimisation-based estimation
    Kumar, N.
    Saderla, S.
    Kim, Y.
    AERONAUTICAL JOURNAL, 2023, 127 (1307): : 76 - 96
  • [33] Optimization of grid independent diesel-based hybrid system for power generation using improved particle swarm optimization algorithm
    Maleki, Akbar
    Pourfayaz, Fathollah
    2015 30TH INTERNATIONAL POWER SYSTEM CONFERENCE (PSC), 2015, : 111 - 117
  • [34] A modified multidimension diode model for PV parameters identification using guaranteed convergence particle swarm optimization algorithm
    Nunes, Hugo
    Bento, Pedro
    Pombo, Jose
    Mariano, Silvio
    Calado, Maria do Rosario
    2018 IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2018 IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC / I&CPS EUROPE), 2018,
  • [35] System identification of a composite plate using hybrid response surface methodology and particle swarm optimization in time domain
    Sankar, P. Athi
    Machavaram, Rajendra
    Shankar, K.
    MEASUREMENT, 2014, 55 : 499 - 511
  • [36] Identification of transformer fault based on dissolved gas analysis using hybrid support vector machine-modified evolutionary particle swarm optimisation
    Illias, Hazlee Azil
    Liang, Wee Zhao
    PLOS ONE, 2018, 13 (01):
  • [37] Identification of inelastic parameters based on deep drawing forming operations using a global-local hybrid Particle Swarm approach
    Vaz, Miguel, Jr.
    Luersen, Marco A.
    Munoz-Rojas, Pablo A.
    Trentin, Robson G.
    COMPTES RENDUS MECANIQUE, 2016, 344 (4-5): : 319 - 334
  • [38] Identification of Mechanical Parameters in Flexible Drive Systems Using Hybrid Particle Swarm Optimization Based on the Quasi-Newton Method
    Hafez, Ishaq
    Dhaouadi, Rached
    ALGORITHMS, 2023, 16 (08)
  • [39] Parameters tuning of power system stabilizer PSS4B using hybrid particle swarm optimization algorithm
    Wang, Delin
    Ma, Ningning
    Wei, Mengxi
    Liu, Yingchao
    INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS, 2018, 28 (09):
  • [40] A new design method for adaptive IIR system identification using hybrid particle swarm optimization and gravitational search algorithm
    Jiang, Shanhe
    Wang, Yan
    Ji, Zhicheng
    NONLINEAR DYNAMICS, 2015, 79 (04) : 2553 - 2576