Parameters identification of reduced governor system model for diesel-engine generator by using hybrid particle swarm optimisation

被引:10
|
作者
Lin, Chien-Hung [1 ]
Wu, Chi-Jui [1 ]
Yang, Jun-Zhe [2 ]
Liao, Ching-Jung [3 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Elect Engn, Taipei, Taiwan
[2] I Shou Univ, Dept Elect Engn, Kaohsiung, Taiwan
[3] Taiwan Power Co, Power Res Inst, Taipei, Taiwan
基金
美国国家航空航天局;
关键词
power generation control; diesel-electric generators; distributed power generation; diesel engines; particle swarm optimisation; power system stability; reduced order systems; power system identification; parameters identification; reduced-order governor system model; diesel-engine generators; hybrid particle swarm optimisation; island power system; reduced-order model; ROM; hybrid PSO; governor control systems; stability analysis; PSS; E;
D O I
10.1049/iet-epa.2017.0851
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study presents an approach to build a reduced-order model (ROM) for the governor control systems of diesel-engine generators in an island power system. The hybrid particle swarm optimisation (PSO) is used in the parameter identification of the ROM. The reduced-order governor system model could be a useful and feasible model in the stability analysis of the island power system by using power system simulator for engineering. The results of the ROM and a sixth-order model have been compared. It is found that the ROM with the parameter values identified using the hybrid PSO is robust. Moreover, real-case validation of the ROM shows that it is usable to analyse stability and contingency in the power system.
引用
收藏
页码:1265 / 1271
页数:7
相关论文
共 50 条
  • [21] Hyperelastic constitutive model parameters identification using optical-based techniques and hybrid optimisation
    Saeed Mollaee
    David M. Budgett
    Andrew J. Taberner
    Poul M. F. Nielsen
    International Journal of Mechanics and Materials in Design, 2024, 20 : 233 - 249
  • [22] Hyperelastic constitutive model parameters identification using optical-based techniques and hybrid optimisation
    Mollaee, Saeed
    Budgett, David M.
    Taberner, Andrew J.
    Nielsen, Poul M. F.
    INTERNATIONAL JOURNAL OF MECHANICS AND MATERIALS IN DESIGN, 2024, 20 (02) : 233 - 249
  • [23] Nonlinear system identification using locally linear model tree and particle swarm optimization
    Nekoui, Mohammad Ali
    Sajadifar, Seyed Mohammad
    2006 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS 1-6, 2006, : 1622 - +
  • [24] Flood discharge prediction using improved ANFIS model combined with hybrid particle swarm optimisation and slime mould algorithm
    Samantaray, Sandeep
    Sahoo, Pratik
    Sahoo, Abinash
    Satapathy, Deba P. P.
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (35) : 83845 - 83872
  • [25] Flood discharge prediction using improved ANFIS model combined with hybrid particle swarm optimisation and slime mould algorithm
    Sandeep Samantaray
    Pratik Sahoo
    Abinash Sahoo
    Deba P. Satapathy
    Environmental Science and Pollution Research, 2023, 30 : 83845 - 83872
  • [26] Identification of ductile fracture model parameters for three ASTM structural steels using particle swarm optimization
    Zhu, Ya-zhi
    Huang, Shi-ping
    Hong, Hao
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2022, 23 (06): : 421 - 442
  • [27] Identification of unknown parameters of a single diode photovoltaic model using particle swarm optimization with binary constraints
    Bana, Sangram
    Saini, R. P.
    RENEWABLE ENERGY, 2017, 101 : 1299 - 1310
  • [28] Parameter Identification of Wiener Model with Discontinuous Nonlinearities Using Hybrid Simplex Search and Particle Swarm Optimization
    Tang, Yinggan
    Qiao, Leijie
    Guan, Xinping
    NEUROQUANTOLOGY, 2008, 6 (04) : 387 - 396
  • [29] Study on prediction model of diesel engine with regulated two-stage turbocharging system based on hybrid genetic algorithm-particle swarm optimization method at different altitudes
    Liu, Ruilin
    Ding, Haojian
    Zhang, Zhongjie
    Yang, Chunhao
    Zhou, Guangmeng
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) : 11923 - 11937
  • [30] Hammerstein Model based System Identification using Craziness Based Particle Swarm Optimization Algorithm
    Pal, P. S.
    Ghosh, A.
    Choudhury, S.
    Kumar, A.
    Kar, R.
    Mandal, D.
    Ghoshal, S. P.
    2016 INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), VOL. 1, 2016, : 1623 - 1627