The Component Group of the Automorphism Group of a Simple Lie Algebra and the Splitting of the Corresponding Short Exact Sequence

被引:0
作者
Guendogan, Hasan [1 ]
机构
[1] Tech Univ Darmstadt, Fachbereich Math, D-64289 Darmstadt, Germany
关键词
Automorphism group; simple; semisimple; Lie algebras splitting; semidirect product;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let g be a simple Lie algebra of finite dimension over K is an element of {R, C} and Aut(g) the finite-dimensional Lie group of its automorphisms. We will calculate the component group pi(0)(Aut(g)) = Aut(g)/Aut(g)(0), the number of its conjugacy classes and will show that the corresponding short exact sequence 1 -> Aut(g)(0) -> Aut(g) -> pi(0)(Aut(g)) -> 1 is split or, equivalently, there is an isomorphism Aut(g) congruent to Aut(g)(0) x pi(0)(Aut(g)). Indeed, since Aut(g)(0) is open in Aut(g), the quotient group pi(0)(Aut(g)) is discrete. Hence a section pi(0)(Aut(g)) -> Aut(g) is automatically continuous giving rise to an isomorphism of Lie groups Aut(g) congruent to Aut(g)(0) x pi(0)(Aut(g)).
引用
收藏
页码:709 / 737
页数:29
相关论文
共 14 条
  • [1] Brocker T., 1985, Grad. Texts in Math, V98
  • [2] Djokovic D., 1999, AEQUATIONES MATH, V58, P73
  • [3] Gorbatsevich V.V., 1994, ENCY MATH SCI, V41
  • [4] GROSS C, ARXIV09035431V1MATHR
  • [5] GUNDOGAN H, ARXIV08032800MATHRA
  • [6] Helgason S., 1979, Differential Geometry, Lie Groups, and Symmetric Spaces
  • [7] HILGERT J, 1991, INTRO STRUC IN PRESS
  • [8] Hofmann KH, 2006, DEGRUYTER STUD MATH, V25, P1
  • [9] Knapp Anthony W, 1996, LIE GROUPS INTRO, V140, P4
  • [10] Visible actions on symmetric spaces
    Kobayashi, Toshiyuki
    [J]. TRANSFORMATION GROUPS, 2007, 12 (04) : 671 - 694